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Abstract— Deep Neural Networks (DNNs) can be used as
function approximators in Reinforcement Learning (RL). One
advantage of DNNs is that they can cope with large input
dimensions. Instead of relying on feature engineering to lower
the input dimension, DNNs can extract the features from raw
observations. The drawback of this end-to-end learning is that
it usually requires a large amount of data, which for real-
world control applications is not always available. In this paper,
a new algorithm, Model Learning Deep Deterministic Policy
Gradient (ML-DDPG), is proposed that combines RL with state
representation learning, i.e., learning a mapping from an input
vector to a state before solving the RL task. The ML-DDPG
algorithm uses a concept we call predictive priors to learn a
model network which is subsequently used to pre-train the
first layer of the actor and critic networks. Simulation results
show that the ML-DDPG can learn reasonable continuous con-
trol policies from high-dimensional observations that contain
also task-irrelevant information. Furthermore, in some cases,
this approach significantly improves the final performance in
comparison to end-to-end learning.

I. INTRODUCTION

In recent years, there has been a growing interest in the use
of Deep Neural Network (DNN) as function approximators
in Reinforcement Learning (RL). DNNs were used in [1]
and [2] to approximate the Q-function when Q-learning was
used to learn a task from raw visual observations. In [3]
this technique was combined with the actor-critic approach
to form the Deep Deterministic Policy Gradient (DDPG)
algorithm, which was able to solve several continuous control
tasks, including the cart-pole benchmark [4] and the “chee-
tah” locomotion task introduced in [5].

One important aspect of learning to control is to learn how
to efficiently gather the task-relevant sensory information
necessary to make informed decisions [6]. Specifically in
the case of a robot designed for a wide variety of tasks,
the amount of sensory information needed for one particular
task, is often far less than the total amount of information that
the robot gathers through its sensors [7]. Furthermore, the
sensory information (observations) typically requires prepro-
cessing before it can be used in control as state information.

Instead of relying on an engineer to design a state estima-
tor to reconstruct the state vector from a set of observations,
ideally the machine should be able to learn this estimator as
well. Learning such an observation-to-state mapping, prior to
solving the RL problem, is known in the literature as state
representation learning [7]. Several examples exist in which
this approach has been successfully applied, for instance: by
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using an auto-encoder network [8], Slow Feature Analysis
(SFA) [9], robotic priors [7] or by simultaneously learning
the reward and transition function [10]. These examples have,
however, all focused on learning from visual observations
and none of them integrates these methods with algorithms
that combine RL with DNNs.

This paper introduces a new algorithm called Model
Learning Deep Deterministic Policy Gradient (ML-DDPG),
in which state representation learning is combined with a RL
algorithm that uses DNNs as a function approximator. The
algorithm is designed to learn a wide range of continuous
control policies on a varied range of challenging sets of
observations, that are typically unsuitable for other control
algorithms. It learns from a high-dimensional stream of
data that can include information that is both relevant and
irrelevant to the task at hand, and can include a Markov state
directly or indirectly, by including sequences of actions and
observations.

The ML-DDPG algorithm learns a model network based
on the concept of predictive priors, which assumes that
the next state representation and the reward should both
be predictable, given the current state and the action taken
in that state. The model network is constructed in such a
way that it learns the observation-to-state mapping by back-
propagating the prediction errors, which results in a state
representation that is inherently predictable. Both the actor
and the critic then learn from the state representation instead
of the raw observations.

The motivation behind the algorithm is to compare an
approach based on end-to-end learning [11] with an approach
in which learning a state representation from a set of ob-
servations precedes the learning of a good control policy
for a given task, based on the learned state representation.
Given enough data and learning time, end-to-end learning
is believed to reach a performance that is superior to other
approaches, since there are no constraints imposed on the
network that restrict it in any way [12]. However, end-to-
end learning requires a large amount of data [13], which is
not always available. The aim of the ML-DDPG is, therefore,
to outperform the DDPG when data is scarce without putting
a constraint on the performance when data is abundant.

The algorithm is tested on several continuous control tasks,
where for each task two challenging observation sets are
defined. In one observation set, half of the inputs are “noise-
states”, which represent sensor measurements that have no
relation to the task for which the agent receives rewards.
For the second observation set, the system is assumed to be
partially observable; the data set is therefore made up of a
sequence of actions and measurements, where the sequence
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is intentionally chosen to be larger than necessary to guar-
antee the Markov property. We show that our algorithm is
able to extract the information that is relevant for the task
at hand from the observations, and so to improve the final
policy learned by the agent.

The paper is organized as follows. Section II introduces
RL, DDPG and state representation learning. Section III
details the new algorithm, ML-DDPG. Simulation results are
presented in Section IV and Section V concludes the paper.

II. PRELIMINARIES

This work builds on earlier work from the RL community,
specifically on the DDPG actor-critic algorithm introduced
in [3], and on the concept known as state representation
learning. The rest of this section explains this prior work
in more detail.

A. Reinforcement Learning (RL)

In RL a learning agent interacts with an environment
with the aim of maximizing the rewards received from the
environment over time. A RL problem is modelled as a
Markov Decision Process (MDP) described by the tuple
M = (S,A, f, r), where the state space S is a set of
states s ∈ Rm, the action space A is a set of actions
a ∈ Rp, f : S × A→ S is the state transition function, and
r : S × A → R is the reward function. At each timestep t,
the agent receives an observation ot ∈ Rn that determines
its current state st, it chooses an action at, receives a scalar
reward rt+1 ∈ R according to the reward function r and
transits to state st+1 according to the transition function f .

The goal in RL is to learn a control policy π : S → A
that maximizes the discounted sum of future rewards Rt =∑T
t=i γ

i−tr(st, at) where γ ∈ [0, 1] is the discount factor
and T the number of time steps per learning episode.

The action-value function Q is often used in RL algorithms
to denote the expected future reward given an action at taken
in state st and thereafter following the policy π by taking
the action aπ = π(s). The Q function, in the form of a
difference equation is given by

Qπ(st, at) = rt+1 + γQπ(st+1, π(st+1)).

B. Actor-Critic

In applications like robotics, where the state and action
spaces are continuous, function approximators have to be
used to approximate both the action-value function Q and
the policy π [14]. Actor-critic algorithms are suitable in
these situations since they allow both of these functions to
be learned separately. This is in contrast with critic-only
methods, which require a complicated optimization at every
time step to find the policy.

In actor-critic methods, the critic learns the action-value
function Q while the actor learns the policy π. In order to
ensure that updates of the actor improve the expected dis-
counted return, the update should follow the policy gradient
[15]. The main idea behind actor-critic algorithms is that the
critic provides the actor with the policy gradient. In theory,
the critic should have converged before it can provide the

actor with an unbiased estimate of the policy gradient, in
practice however this requirement can be relaxed as long as
the actor learns at a slower rate than the critic [15].

C. Deep Deterministic Policy Gradient (DDPG)

The DDPG algorithm is an off-policy actor-critic algo-
rithm, first introduced in [3]. In this algorithm, both the
actor and the critic are approximated by a DNN with
parameter vectors ζ and ξ, respectively. The critic is trained
by minimizing the squared Temporal Difference (TD) error

L(ξ) =
(
rt+1 + γQ(st+1, π(st+1|ζ)|ξ)−Q(st, at|ξ)

)2
.

The actor is updated in the direction of the policy gradient
5Qζ using the current approximation of the critic. The
update of ζ with 4ζ is given by

4ζ = 5aQ(st, π(st|ζ)|ξ)5ζ π(st|ζ).

According to [16] the Q-function should be in the compatible
form in order for the policy gradient to be unbiased. Al-
though this is generally violated in the DDPG algorithm, with
the addition of a few extra stability measures the algorithm
has been shown to work well in practice.

A significant problem occurs when minimizing (II-C) [2].
The updates of the parameter ξ not only change the output of
the critic network Q(st, at|ξ), but they also change the target
function rt+1 + γQ(st+1, π(st+1|ζ)|ξ) that the network is
learning. This is due to the recursive nature of the action-
value function. Similarly, updates to the actor parameter ζ
also change the target function. This coupling can lead to
unstable behaviour and can cause the learning process of the
action-value function approximation to diverge.

A solution, proposed in [3], that reduces the coupling
between the target function and the actor and critic networks,
is to update the parameters of the target function using
“soft” updates. Instead of using ζ and ξ directly, a separate
set of weights ζ− and ξ− are used, which slowly track
the parameters ζ and ξ of the actor and critic networks
constituting so called target networks.

The “soft” updates are performed after each learning step,
using the following update rule

ζ− ← (1− τ)ζ− + τζ, ξ− ← (1− τ)ξ− + τξ

where τ ∈ (0, 1] represents the trade-off between the learning
speed and stability. Using these new parameters, the squared
TD error becomes

Lc(ξ) =
(
rt+1 +γQ(st+1, π(st+1|ξ−)|ζ−)−Q(st, at|ξ)

)2
.

A second measure to ensure stable learning is to use an
Experience Replay Database (ERD) [1]. Samples collected
from the system are stored in this database such that they
can be reused at a later stage. This is necessary because
DNN are global approximators and are prone to catastrophic
forgetting, i.e., the network forgets what it has learned in
some part when updating some other part. In order to prevent
catastrophic forgetting, a DNN should be trained with mini-
batches, where the samples in a mini-batch are independently



Algorithm 1 DDPG

{Actor-Critic Learning}
Randomly initialize network weights ζ and ξ
ζ− ← ζ and ξ− ← ξ {set weights of target network}
for learning step = 1 to N do

Sample random mini-batch from database
Calculate 4ζ and Lc over mini-batch
ζ ← ζ − αa 4 ζ and ξ ← ξ − αc ∂Lc

∂ξ

ζ− ← (1−τ)ζ−+τζ and ξ− ← (1−τ)ξ−+τξ {update
target network}

end for

and identically distributed. The ERD is necessary to create
such mini-batches, although care should be taken to keep
the data within the database varied enough to prevent it from
over-fitting [17]. See Algorithm 1 for an overview of DDPG.

D. State Representation Learning

In RL, the state s is not always directly accessible, but
needs to be constructed from a set of observations o. Such
an observation-to-state map f : O → S can be the result
of feature engineering, in which an engineer selects the
observations and designs the mapping, but this can also be
learned from data. The process of learning the observation-
to-state mapping is called state representation learning [7].

State representation learning is a form of unsupervised
learning, i.e., there are no training examples available since
it is not known a priori what the most suitable state represen-
tation is to solve the problem. Learning an observation-to-
state mapping therefore involves either making assumptions
about the structure of the state representation or learning the
mapping as part of learning some other function.

In [8], [18], [19], an auto-encoder is used to find an
observation-to-state mapping in which the observations are
compressed into a low-dimensional state vector. The ob-
jective, during training, is to find states from which the
original observations can be reconstructed. The auto-encoder
subsequently learns a state representation that captures only
the unique features of the observation, i.e., how they differ
from other observations.

Another unsupervised method is Slow Feature Analysis
(SFA) [9], which is based on the idea that most phenomena
in the world change slowly over time. In [20], [18] this
assumption is used to learn a mapping between visual
observations and a state representation that gradually changes
over time.

In [7], these and several other assumptions about the
structure of a good state representation are combined into the
so-called Robotic Priors. They are divided into the simplicity
prior, the temporal coherence prior, the proportionality prior,
the causality prior and the repeatability prior. For each of
these priors, a loss function is defined. An observation-
to-state mapping is subsequently trained to minimize the
combined loss functions of the individual priors. The paper
then shows a performance increase when using the learned

state representation instead of the raw observations as input
to the Neural Fitted Q-iteration algorithm [1].

III. MODEL LEARNING DEEP DETERMINISTIC POLICY
GRADIENT (ML-DDPG)

A DNN approximates a function by learning a transforma-
tion from an input vector to a feature representation, that can
be linearly combined in the output layer, to a target function
[21]. Viewed in this way, an internal signal, between two
layers of a DNN represents some intermediate representation
that is somewhere between the original input and the final
feature representation. The main idea behind the ML-DDPG
approach is that that up to a certain point, an actor and
critic network, can benefit from sharing their intermediate
representation. Furthermore, we argue that this intermediate
representation can be learned more effectively by a third
(model learning) network. In the rest of this paper, we
refer to this intermediate representation as the state and the
transformation of the input to this state, as an observation-
to-state mapping.

The ML-DDPG architecture consist of three DNNs, a
model network, a critic network and an actor network. The
model network is trained by using a new concept that we call
predictive priors and is integrated with the actor and critic
networks by copying some of its weights. In the experiments,
the creation of the ERD, learning the model network and
training the actor and critic is done in separate steps. This
allows us to train both the DDPG and the ML-DDPG on
exactly the same dataset and it simplifies the training of the
individual layers of a DNN. Ultimately, however, the goal
is to train the model network simultaneously with the actor
and critic networks and to create the ERD while learning, as
in the original DDPG.

A. Predictive priors

The predictive priors consist of two separate priors. The
first prior is the predictable transition prior which states
that, given a certain state st and an action at taken in that
state, one can predict1 the next state ŝt+1. An important
difference with other methods like [22], [10], is that we do
not predict the next observation ôt+1 but the next state ŝt+1.
This becomes important if the observation ot contains task-
irrelevant information. A state that needs to be able to predict
the next observation still has to contain this task-irrelevant
information to make the prediction, whereas in the proposed
case this information can be ignored altogether. The second
prior is the predictable reward prior which states that, given
a certain state st and an action at taken in that state, one
can predict the next reward r̂t+1. This prior enforces that
all information relevant to the task is available in the state,
which helps the predictable transition prior to converge to
a meaningful representation for the given task.

The predictive priors approach essentially enforces the two
elementary properties of an MDP. The relevant information
is, however, already present in the original observation. The

1Values predicted by models are denoted with ·̂.
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Fig. 1: Network architecture of the model network learning
an observation-to-state mapping using the predictive priors.

point of using the predictive priors is to find a state repre-
sentation from which it is easier, i.e., fewer transformations
are necessary, to actually learn the transition and reward
function.

The advantage of using the predictive priors is that state
representation learning is transformed from an unsuper-
vised learning problem to a supervised learning problem.
A single interaction with the system produces a sample
{ot, at, rt+1, ot+1}. The observation ot+1 can be mapped
to st+1 using the current approximation of the observation-
to-state mapping. This gives us both the inputs ot and at
as well as the target values rt+1 and st+1. Given a set of
such samples and some function approximator, supervised
learning can be used to find these mappings.

Another advantage of this approach is that the state repre-
sentation that is learned is goal directed. Observations that do
not correlate with the reward or are inherently unpredictable
will not be encoded in the state representation. This is in
contrast to methods like an auto-encoder or SFA since these
methods do not differentiate between observations that are
useful for solving a particular task and observations that are
not.

B. Model network

The predictive priors are implemented by a model network
that learns to predict the next state and reward {ŝt+1, r̂t+1}
from the observation-action tuple {ot, at}. The architecture
is shown in Figure 1. Each circle in the image represent
a single layer containing multiple neurons, the lines are
n-dimensional signals. The observation-to-state mapping is
encoded in the first layer of the network. It has observation
ot as input and state st as output. This state, together with
the action at form the input to the second layer. Finally, two
parallel linear output layers produce a prediction of the next
state ŝt+1 and the reward r̂t+1 respectively.

The network is trained by minimizing the following ob-
jective function

Lm = ‖st+1 − ŝt+1‖22 + λm ‖rt+1 − r̂t+1‖22

where λm represents the trade-off between predicting the
reward and the next state. Note that, to obtain the target
st+1, the current approximation of the observation-to-state
mapping is used, to map the next observation ot+1 to the
next state st+1. This could potentially lead to convergence
problems, since the target depends on the current approxima-
tion. In practice, however, these problems did not occur. In all

ot

Q(ot, at)

st

π(ot)ψl1 = ζl1 = ξl1
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at
ξlr

critic

observation-to-state
mapping

actor

Fig. 2: Actor and critic networks integrating the observation-
to-state mapping learned in the model network.

Algorithm 2 ML-DDPG

{Model learning}
Randomly initialize network weights ψ, ζ and ξ
for pre-training step = 1 to M do

Sample random mini-batch from database
Calculate Lm over mini-batch
ψ ← ψ − αm∂Lm

∂ψ
end for
{Actor-Critic Learning}
ζl1 ← ψl1 and ξl1 ← ψl1 {copy weights to actor and
critic}
ζ− ← ζ and ξ− ← ξ {set weights of target network}
for learning step = 1 to N do

Sample random mini-batch from database
Calculate La and Lc over mini-batch
ζlr ← ζlr − αa ∂La

∂ζlr
and ξlr ← ξlr − αc ∂Lc

∂ξlr

ζ− ← (1−τ)ζ−+τζ and ξ− ← (1−τ)ξ−+τξ {update
target network}

end for

experiments, which all started from different random initial
conditions, the learning converged to similar local optima.

C. Integrating the model network

The model network is trained first, before the other two
networks. Afterwards the observation-to-state mapping, that
is encoded in the first layer of the model network, is copied
to the first layer of, both the actor and the critic network. The
parameter vectors ψ, ζ and ξ of the model, actor and critic
respectively are therefore split in two parts where, ψl1 , ζl1
and ξl1 represent the weights of the first layer and ψlr , ζlr
and ξlr the weights of the remaining layers. Figure 2 shows
how the actor and critic networks use the same observation-
to-state mapping that is learned by the model network.

After pre-training, i.e., the model learning, the weights of
the first layers ζl1 and ξl1 are fixed. Subsequently, standard
actor-critic is used to learn the weights in the remaining
layers of the actor ζlr and critic ξlr , see Algorithm 2.

D. Saturation penalty

One specific problem we encountered, with both the
DDPG and the ML-DDPG, was the fact that the actor
sometimes learned actions that lay outside the saturation
limits of the actuator. This is caused in part because all
the samples from which the networks learn are collected
prior to learning. If an agent learns actions outside the range,



TABLE I: Dimension table for the two benchmarks

Action Internal state ounrelated oredundant

2-link arm 2 6 18 24

Octopus 36 96 192 308

in which data was originally collected, the policy gradient,
evaluated at these actions, is based on extrapolating the critic
network, which for large deviations is very unreliable. This
creates instability issues in both networks and hampers the
convergence of the algorithm.

The loss function of the actor corresponds to the Q-
function. In order to restrict the action space a saturation
penalty is added and the loss function becomes

La(ζ) =−Q(s, π(s|ζ)) + λa

(
max(π(s|ζ)− 5, 0)

+ max(−π(s|ζ)− 5, 0)
)2

where λa represents the trade-off between maximizing the
reward and minimizing the saturation penalty. The actions
are scaled such that they have zero mean and a standard
deviation of 1, which puts the saturation limit at 5 times the
standard deviation of the original exploration policy.

IV. SIMULATION RESULTS

In order to compare the performance of the ML-DDPG
algorithm with the DDPG algorithm, they are both applied
to the 2-link arm problem from [17] and the octopus problem
from [23]. In both benchmarks the state is not directly
available, instead there are two types of observations:

1) oredundant - Includes a sequence of actions and mea-
surements of a partially observable system. It is called
redundant since the length of the sequence is chosen
larger than necessary to give the observation vector the
Markov property.

2) ounrelated - Includes the full state extended by a vector
of white noise inputs.

Table I shows the dimensions of the action space, the internal
state and the two observation types for both benchmarks. For
both ML-DDPG and DDPG an ERD, batch-normalization,
an L2 penalty λc = 0.002 on the critic weights and “soft”
updates of the target networks with τ = 10−3 are used to
stabilize the learning. Adam [24] is used for learning the
weights of all three DNNs with a base learning rate of αm =
10−3, αa = 10−4 and αc = 10−3 for the model, actor and
critic respectively. The hidden layers of all three networks
contain 100 neurons each. λa = 50 and λm = 10 and γ =
0.99.

Before the algorithms are run, data is collected by fol-
lowing a random policy based on the Ohrnstein-Uhlenbeck
process [25]. The algorithms are then trained off-policy, on
the same database. A single learning step consists of a single
update of the weights of the actor and the critic, each ex-
periment consists of 40000 learning steps for the 2-link arm
problem and 30000 learning steps for the octopus. Every 100
learning steps the policy π is evaluated using a pre-defined
reference signal. The performance of the two algorithms is

evaluated for both types of observations. Furthermore, the
experiments are repeated for different sizes of the ERD, to
compare how the algorithms perform when data is either
scarce or abundant.

In order to make a quantitative comparison between the
learning curves, the settling time τs, rise time τrise and the
average performance R̄ are calculated, see Appendix. In all
experiments, the saturation penalty described in Section III-
D, was a necessary condition for the algorithms to converge.

A. 2-link arm

The 2-link arm consists of two links, each controlled by
a motorized joint. The angle of the first link θ1 ∈ [−π2 ,

π
2 ]

is measured with respect to the downward position and the
angle of the second link θ2 ∈ [−π2 ,

π
2 ] with respect to the first

link. The two motorized joints can be controlled by setting
a1 and a2, which are (a scaled version of) the motor voltages.
Finally the reference position pref =

[
xref yref

]
determines

the desired position of the tip of the second link.
The reward from the environment is based on the Euclidian

distance D between the reference position and the current
position of the tip of the second link and on the angular
velocities θ̇ of the two links. The reward function is given
by

r(D, θ̇) = −
(
D + w|θ̇|2

)
where w represent the trade-off between the two terms.

The observation vector oredundant contains the current angles
θ and the angles and actions from the previous 5 timesteps
as well as the reference:

oredundant
t =

[
θt .. θt−5 at−1 .. at−5 pref

t

]
where θt is a vector of the two angles at time instance t, at
a vector of the two control actions and pref

t the Cartesian
reference position at timestep t. The observation vector
ounrelated contains the current angles θ, the angular velocity θ̇,
a vector of unrelated white noise inputs et and the reference
position pref

t :

ounrelated
t =

[
θt θ̇t et pref

t

]
.

Figure 3 shows the mean (thick line) and standard devia-
tion (shaded area) of the learning curve for both observation
vectors using an ERD of 30K samples. The results from
the other experiments are presented in Table II. For the 2-
link arm benchmark, the ML-DDPG outperforms the DDPG
algorithm in final performance R̄ (+37.8% on ounrelated and
+8.1% on oredundant) and in rise time τrise −29% and settling
time τs −36.2% on the ounrelated observation type. It does
have slower convergence on the oredundant type (rise time
τrise +28.7% and settling time τs +39%). Both algorithms
perform better, in terms of the final performance, if more
data is available. The advantage of the ML-DDPG over the
DDPG seems relatively constant and does not degrade when
data becomes abundant as was expected.

Figure 4 shows a time-domain plot of the x-coordinate of
the tip of the second link and (one of the) accompanying con-
trol actions. It is clear that the performance is incomparable
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Fig. 4: Time domain plot of the final policy on the 2-link
arm benchmark, showing one of the states (top) and control
actions (bottom).

to other optimal control methods, the controlled system has a
steady-state error and a significant overshoot. It is important
to note, however, that the controller does not use a separate
observer, although the system is partially observable and
that the reference is given in Cartesian coordinates whereas
the position of the 2 links are given in joint angles. The
controller, therefore, needs to learn the non-linear mapping
between the two, while also learning the unobservable states
from a sequence of measurements. Seen in this light, we
think the performance is actually quite good. We also believe
the performance can be further improved by tuning the
reward function and/or the architecture of the DNNs which
has not been done extensively to get these results.

B. Octopus

The octopus arm [23] consists of 13 segments, each
of which contains multiple muscles. The muscles can be
controlled by specifying their stiffness a ∈ [0, 1]. The arm is
attached to a base at one side and moves in a 2-dimensional
plane. The task is to reach to a randomly placed food target.
The task is completed if it touches the food target with any
part of the arm.

The reward from the environment is based on the Eu-
clidean distance D between the food and the segment that

TABLE II: Learning curve characteristics on the 2-link arm
for different sizes of the ERD. The rise time τrise and settling
time τs are denoted in ×1000 learning steps.

Input DB DDPG ML-DDPG
type size τrise τs R̄ τrise τs R̄

ounrelated

15K 3 3.2 −0.22 2 3.5 −0.18
30K 3 8.6 −0.24 2.8 3.8 −0.16
90K 3.4 3.7 −0.19 1.9 2.6 −0.13

oredundant

15K 2.5 11.6 −0.26 3.7 17.2 −0.28

30K 4.8 5.1 −0.21 1.9 2.5 −0.18
90K 5.9 6.2 −0.19 11.3 12.2 −0.15

is closest to the food. Whenever the goal is reached an extra
bonus B is given. The reward function is given by

r(D,B) = (B − 2)−D

where B = 2 whenever the goal is reached and B = 0
otherwise.

As in the 2-link arm benchmark two observation vectors
are defined oredundant, in which the velocity information is
replaced by positions and actions at previous time instances,
and ounrelated, in which the state is extended with a vector of
white noise inputs.

The results on the Octopus benchmark are not as conclu-
sive as with the 2-link arm. Both algorithms have a similar
rise and settling time and are able to learn the task in about
2000 learning steps. Both successfully learn to reach for
the food, which takes them around 1.5s from their starting
position. In order to see if the learned policy also generalized
to other initial positions, the octopus arm was randomly
excited for 2s before testing the learned policy again. Also,
in these cases, the octopus was successful in reaching the
food. Perhaps in spite of the high dimensionality of the
problem, the Octopus problem is relatively easy since it does
not require a very precise control action, like in the case of
the 2-link arm.

V. CONCLUSION

This paper introduces a new algorithm, the ML-DDPG,
that trains a model network using the predictive priors before
learning the RL task. To the best of our knowledge, this was
the first time that the DNNs of a RL algorithm were trained
in two-stages, using the prediction error as a training signal.
A big advantages of using the predictive priors is that it
does not require the agent to follow a specific policy and/or
exploration strategy. Hence the agent can learn from any
previously created ERD. Furthermore, the DNN is trained
using supervised learning as opposed to the approach used
in [7], where unsupervised learning was used.

Learning an observation-to-state mapping, before training
the actor and critic networks, has been shown to increase
the final performance on a 2-link arm benchmark, primarily
when the observations contain a large amount of unrelated
inputs, for the task at hand. Even on a relatively large
dataset it has been experimentally shown that this approach



outperforms an approach in which the DNNs are trained end-
to-end, which suggests that the latter method is not always
preferable as is claimed in [12].

Results in this paper confirm that using DNNs in actor-
critic algorithms, is a very promising field of research,
especially for cases in which the state and action dimensions
of the problem are very high. More work is necessary to
visualise what kind of state representation the ML-DDPG is
actually learning and how it performs on other benchmarks.
Other future work will try to answer the more general
question of how DNNs seem to escape the curse of dimen-
sionality.

APPENDIX

To define the settling time and the rise time of the learning
curve, first introduce the undiscounted return after j learning
steps averaged over the number Ne of learning experiments:

R̄j =
1

Ne

Ne∑
l=1

T∑
t=0

r(st, at)

where T is the duration of the evaluation, referring to the jth
learning step within the lth learning experiment. For each
reward, the sequence R̄1, R̄2, . . . , R̄Nt

is normalized so that
the minimum value of this sequence is -1.

The performance R̄f at the end of learning is defined
as the average normalized undiscounted return in the last
c learning steps:

R̄f =
1

c

Nt∑
j=Nt−c+1

R̄j

The settling time τs of the learning curve is then defined as
the number of learning steps after which the learning curve
enters and remains within a band ε of the final value R̄f :

τs = Tt · arg max
j

(|R̄f − R̄j | ≥ εR̄f )

In this paper c and ε are set to 1000 and 0.05 respectively.
The rise time is defined as the number of learning steps
required to climb from the 10% performance level to the
90% performance level:

τrise = τ90 − τ10

with τp defined as:

τp = Tt · arg max
j

(
R̄j − R̄1

R̄f − R̄1
≥ p

100

)
for p = 10% and 90%.
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