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Integrating State Representation Learning into

Deep Reinforcement Learning

Tim de Bruin1, Jens Kober1, Karl Tuyls2 and Robert Babuška1

Abstract—Most deep reinforcement learning techniques are
unsuitable for robotics, as they require too much interaction
time to learn useful, general control policies. This problem can
be largely attributed to the fact that a state representation needs
to be learned as a part of learning control policies, which can
only be done through fitting expected returns based on observed
rewards. While the reward function provides information on the
desirability of the state of the world, it does not necessarily pro-
vide information on how to distill a good, general representation
of that state from the sensory observations. State representation
learning objectives can be used to help learn such a repre-
sentation. While many of these objectives have been proposed,

they are typically not directly combined with reinforcement
learning algorithms. We investigate several methods for inte-
grating state representation learning into reinforcement learning.
In these methods, the state representation learning objectives
help regularize the state representation during the reinforcement
learning, and the reinforcement learning itself is viewed as a
crucial state representation learning objective and allowed to
help shape the representation. Using autonomous racing tests in
the Torcs simulator we show how the integrated methods quickly
learn policies that generalize to new environments much better
than deep reinforcement learning without state representation
learning.

Index Terms—Deep Learning in Robotics and Automation;
Learning and Adaptive Systems; Sensor Fusion

I. INTRODUCTION

DEEP Reinforcement Learning (DRL) is a promising

framework for enabling robots to perform novel tasks.

Instead of having to explicitly program the required behaviors,

only a reward function that captures the success of the robot

at performing the task needs to be specified. Unfortunately,

while it has been shown that this reward function provides

a signal that can be used to find a mapping directly from

sensory signals to correct actuator commands (e.g., [1], [2]),

the relatively uninformative nature of the reward signal results

in a large amount of experiences required to learn successful

policies.
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Fig. 1: General neural network architecture considered in this

work. A shared embedding s̄(o) of all the different sensory

modalities om is learned. Both the reinforcement learning

cost function (2), as well as a number of state-representation

learning cost terms LSRL1,. . . ,m are employed to shape the

embedding during training.

This is especially troublesome when applying DRL to

robotics. In this field, much of the complexity of learning a

new task is in learning to perceive the world. Robot designers

often equip their robots with several different types of sen-

sors that estimate the state of the world through measuring

different physical phenomena. Deep Learning has shown to

be very capable of extracting descriptive features from high-

dimensional, multi-modal inputs (e.g., [3]). However, while

reward functions describe the desirability of the state of the

world, they often provide only vague and indirect information

on how to distill that state from the raw sensory observations.

This further increases the number of required samples, which

when combined with the high operating cost of robots, makes

using reinforcement learning in this domain infeasible in

general.

In this work, an autonomous racing car is used as a simu-

lation benchmark. Images, range-finder readings and velocity

data are observed and scalar rewards are given based on the

velocity along the track-axis and the distance from the center

of the track. With a wealth of high-dimensional sensor data and

a scalar reward it is easy to learn the wrong causal relations.

Was the negative reward due to the tree in the background,

the combination of velocity and the distance to the track-

edge or the color of the road markings? While some of these

observations might be correlated to a good driving policy

on one track, the learned policy will not necessarily work

on a different circuit. Without a good compact and concise

representation of the state of the problem, large amounts of

diverse data will be required before the true causal connections
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outweigh the accidental ones and a general policy is found.

In order to make learning suitable state representations from

the raw sensor data easier and faster, additional training criteria

can be used to supplement the reinforcement learning objective

[4]. These State Representation Learning (SRL) criteria can

simplify the representation learning problem by encoding prior

knowledge and can help to regularize the learned represen-

tation by making it adhere to some fundamental properties

from physics. Examples of state representation learning criteria

include the classical auto-encoding objective (e.g., [2], [5]–

[7]), predicting instantaneous rewards (e.g., [8]–[10]), learning

the (inverse) dynamics in the state embedding space (e.g.,

[11]–[13]) or encoding the belief that state representations

should change only slowly over time (e.g. [9], [14]), while

being diverse in general [15].

These additional optimization criteria have the potential

to aid reinforcement learning, and even to substitute for

reinforcement learning when a shaped reward function is not

available [13], as is often the case is real world settings.

However, realizing this potential can be non-trivial. When the

auxiliary optimization terms are added to the reinforcement

learning objective naively, performance can easily be reduced

rather than improved. Many of the works that have introduced

new state-representation learning criteria have done so for

purposes other than reinforcement learning (e.g., [12], [13]),

or with the state-representation learning separated from the

reinforcement learning (e.g., [7], [10], [15], [16]). In this work

we take a host of state-representation learning criteria from

the literature. We then propose and compare different ways

of integrating state-representation learning with popular deep

reinforcement learning methods. Specifically, we make the

following contributions:

• We propose and investigate a method for reducing the

potential detrimental effects of changing the state repre-

sentation on-line.

• We combine several state-representation learning objec-

tives from the literature and investigate their contribu-

tions.

• We compare the effects of pre-training the state-

representation and policy on data from a related domain

to learning both from scratch during the reinforcement

learning trials.

• We learn a shared state representation from multi-modal

sensor observations.

• We perform state representation learning and reinforce-

ment learning simultaneously, allowing the reinforcement

learning process to help shape the state representation

while the state representation learning helps regularize

that representation.

The rest of this paper is organized as follows: in Section II

we discuss the reinforcement learning and state representa-

tion learning objectives that we will employ in this work.

Section III discusses the different methods we consider for

combining these objectives in a way that maximally benefits

the reinforcement learning process. To test these methods we

perform experiments that are described in Section IV, the

results of which we examine in Section V. Further discussion

and conclusions are given in Section VI.

II. LEARNING OBJECTIVES

We consider an agent that interacts with an environment

at discrete time-steps t. At each time-step the sensors of the

agent perceive the effects of the hidden environment state st

as sensory observations om
t . Here, m ∈M indicates the sensor

modality with M the set of modalities of the sensors that

the agent is equipped with. We denote the set of all sensory

observations at time-step t by ot .

Based on these observations the agent sends an action

at to the environment. As a consequence of the action, the

environment transitions into a new state st+1. The agent

receives a reward rt+1 which describes the desirability of the

transition: rt+1 = ρ(st ,at ,st+1)
1. Since the true environment

state is not directly accessible, the new state is perceived

as ot+1. Experience tuples {ot ,at ,ot+1,rt+1} are saved in an

experience replay buffer H [1], [17] from which mini-batches

are sampled uniformly at random during training.

The agent’s goal is to choose those actions that maximize

the cumulative discounted reward, or return, for any initial

environment state s0:

R =
T

∑
t=0

γ trt+1 γ ∈ [0,1), (1)

where T is the time-step at which the episode is terminated

(∞ for continuous tasks).

To optimize for (1), a policy has to be found that maps the

observations to actions: a = π(o). These sensory observations

tend to be high dimensional, noisy and redundant, which

makes learning a policy from them directly based only on

rewards both costly and prone to over-fitting.

Our aim therefore is to learn a mapping from the sensory

observations to a low dimensional, concise representation of

the task relevant aspects of the state: s̄(o). In this work we use

a neural network to perform this mapping. This representation

should allow learning a policy that generalizes better, while

using less data. However, in contrast to many other works

on representation learning, we consider reinforcement learning

itself as a crucial state representation learning objective, and

allow it to help shape the representation.

In the following subsections, we describe the different

optimization criteria that we use to map the observations to

state representations and the state representations to actions.

A. Reinforcement Learning

The first objective for which we optimize is the reinforce-

ment learning objective (1). We use (Deep Double) Q-learning

in this work [1], [18], [19] for its simplicity2 and popularity.

The algorithm learns to approximate the value of the return

(1) when taking action a in a given state and following the

optimal policy from the subsequent state onwards. It learns

1The reward might in practice be calculated based on information available
in the observation, or based on additional information about the state that is
only available during training, such as a motion capture setup.

2Continuous actions are future work, although we expect the results in this
work to apply equally to that setting.
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this function by minimizing the squared temporal difference

error loss function:

LRL =
(

Q
(

s̄(ot),at

)

−
[

rt+1 +TγQ−
(

s̄(ot),π(ot+1)
)])2

, (2)

where T = 0 for the terminal step of an episode and 1

otherwise. The network parameters of Q− are older copies

of those of Q, which are set equal to Q periodically for

stability [1], [18]. The policy, excluding exploration, is simply

π(o) = argmax
a

Q(s̄(ot),a).

B. Auto-encoding

Besides using the reinforcement learning objective to shape

the state representation, we want to add additional objectives

that encode some form of prior knowledge which can help sim-

plify and regularize the state representation learning process

by adding optimization targets and limiting the model search

space. The most general prior knowledge that we encode is

the knowledge that high dimensional sensory observations are

often the result of a smaller number of relevant latent state

variables [2], [5], [6], [20]. Additionally, we use the knowledge

that the different sensors on a robot all measure different

physical effects of the same environment state. We encode

these beliefs in two ways.

The first is through the network structure. While the dif-

ferent sensory modalities have their own encoders, these

encodings are then fused and embedded into a shared state

embedding space, as shown in Figure 1. This embedding

space is much lower dimensional than (some of) the sensory

observations.

The second way in which we enable the state representation

to encode significant aspects of the state is by reconstructing

the observations of one or more of the sensory modalities from

the shared embedding space, by minimizing the following loss:

LAEm =
∥

∥ôm
t

(

s̄(ot)
)

− om
t

∥

∥

2
, (3)

where ôm
t (s̄(ot)) is the reconstruction of om

t made by a decod-

ing layer in the network based on the state representation. In

our autonomous car benchmark, we might for instance expect

the representation that is learned to include the curvature of

the road, which would help explain much of the variation in

both the images and the range-finder measurements.

C. Reward prediction

While auto-encoding is very general, and encourages en-

coding all factors that can help explain the variation in the

observed sensor data, we might want the state-representation

to specifically focus on those aspects of the environment state

that are relevant to the task that needs to be performed. The

second SRL objective we consider is therefore predicting the

instantaneous rewards received by the agent [8]–[10]. Doing

this in addition to learning a value function helps especially

when the rewards are sparse. However, even when this is not

the case, this loss term is easier to optimize for than the

temporal difference error (2) as changes to the policy will

only change the data distribution and not the training targets.

We use the mean squared error as the reward prediction loss

term:

Lrew =
(

r̂t+1

(

s̄(ot),at , s̄(ot+1)
)

− rt+1

)2
, (4)

with r̂t+1 (s̄(ot),at) the prediction of the network, based on

the state representation and action, of the reward rt+1. For the

driving task, predicting the reward would encourage encoding

the velocity of the car as well as the position and orientation of

the car relative to the track axis, regardless of the current pol-

icy. Note however that this is not sufficient for a good racing

policy, as we would also need properties like the distance to the

next corner, which does not influence the instantaneous reward.

This is why we still consider the temporal difference loss (2)

to be an important state-representation learning criterion.

D. Slowness and diversity

It is also possible to encode knowledge about physics,

which should be applicable to state representation learning

for robotics, regardless of the task [9]. This physical prior

knowledge can be encoded as loss functions that act directly

on the learned state-space embedding. One popular physical

prior is that states should not change quickly over short periods

of time [14]. A potential downside of encoding this belief is

that its optimum is a state representation that does not change

at all, and therefore contains no information. We can counter

this by adding an additional loss term that encourages diversity

between non consecutive states [15]. The slowness Lslow and

diversity Ldiv loss terms we use are respectively:

Lslow =
∥

∥s̄(ot+1)− s̄(ot)
∥

∥

2
(5)

Ldiv = e−‖s̄(ox)−s̄(oy)‖
2

. (6)

In (6) ox and oy are non-consecutive observations. In practice

we calculate the average of Ldiv over the experiences in a

training mini-batch which is sampled uniformly at random

from an experience replay buffer.

E. (Inverse) state dynamics

Since our eventual goal is to select optimal actions based on

the state representation, it can also be beneficial to make sure

the embedding specifically encodes those aspects of the world

that can be changed by the agent’s actions. This can be done by

learning the inverse state-representation dynamics; predicting

which action was responsible for the transition between two

states [12], [13]. We also learn the forward dynamics by giving

a prediction ˆ̄st+1 of the next state embedding s̄(ot+1) based

on the current state embedding and action. We assume the

environment state to be Markovian and in learning the forward

dynamics we attempt to ensure that our state representation

also has this property. Since we consider discrete actions in

this work we use a classification loss term for the inverse

dynamics Linv. The forward dynamics L f wd are posed as a

regression problem:

Linv =− log
(

P̂
(

at |s̄(ot), s̄(ot+1)
))

, (7)

L f wd =
∥

∥ ˆ̄st+1

(

s̄(ot),at

)

− s̄(ot+1)
∥

∥

2
. (8)
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III. INTEGRATION METHODS

The loss functions from the literature that were reviewed in

the previous section have been used in a number of different

ways. In some works, state-representation learning was not

explicitly combined with reinforcement learning (e.g., [11],

[13]). In others, the state-representation learning objectives

were used during an initial pre-training phase while the state

encoding was held (partially) fixed during the subsequent

reinforcement learning phase (e.g., [7], [10], [15], [16]). Yet

others use the auxiliary optimization objectives during the

reinforcement learning phase (e.g., [9], [12], [21]) or even

learn separate RL controllers that optimize for auxiliary tasks

[8]. In this work, we use a large number of SRL objectives

from the literature, and we propose and investigate different

ways of integrating them with popular deep RL algorithms.

The main aim for the combined methods is finding control

policies that generalize well, while minimizing the number of

required environment interactions.

A. Simultaneous optimization

The first and most straightforward way of integrating state-

representation learning with reinforcement learning that we

consider is to simply add the SRL objectives to the RL loss

LRL and optimize for this new loss function Lsim instead of

the standard loss function used in the RL algorithm:

Lsim = LRL + cSRL

(

cSRL1
LSRL1

+ · · ·+ cSRLnLSRLn

)

, (9)

where cSRL1,...,n
are scaling constants for the individual SRL

loss terms and cSRL is an overall scaling term that trades off

the SRL objectives with the RL objective. The individual loss

scaling terms cSRL1,...,n
are the same in all our experiments.

They were chosen once, such that the 2-norms of the gradients

of the loss terms with respect to the embedding vector are

of the same order of magnitude during the early stages of

learning. We do vary the overall scaling cSRL to investigate

the effects of the trade-off between strictly enforcing our

state-representation knowledge and allowing the reinforcement

learning to mostly dictate the representation. In this work we

refer to this method of optimizing simultaneously for all loss

terms as sim.

During the learning process, we perform batch updates after

each episode, with the number of updates dependent on the

number of experiences obtained during the episode.

B. Alternating optimization with fixed Q values

One of the challenges of reinforcement learning, compared

to supervised learning, is the fact that the training data

distribution can change significantly as the result of a change

in the policy. When using the sim method, this might cause

some of the auxiliary loss terms to suddenly significantly

change the state representation. This in turn can change the Q-

values, which are dependent on the representation. As action

gaps are generally small compared to the Q-values [22], even

small changes in these values could inadvertently change their

ordering and, as a consequence, the policy. This could further

destabilize the learning process.

Fig. 2: Training and validation experiments are performed on

four tracks. Pre-train data from a separate fifth track is used

in some experiments.

To mitigate these effects we propose a second method, alt,

in which the network parameters are updated in two alternating

phases. First, we predetermine the experiences that will be

sampled from the experience buffer. For these experiences,

we determine the predicted Q-values with the current network

parameters: Qi(s̄(o),a) where i indicates the parameter update

step at the start of the current SRL phase. We then first

perform a number of update steps where we optimize for the

state representation learning objectives, while attempting to

minimize the changes to the predicted Q-values:

Lalt = cQfixLQfix + cSRL

(

cSRL1
LSRL1

+ · · ·+ cSRLnLSRLn

)

,

(10)

with:

LQfix =
(

Q
(

s̄(o),a
)

−Qi
(

s̄(o),a
))2

. (11)

After these updates we perform the same number of updates

with the regular reinforcement learning objective LRL (2).

IV. EXPERIMENTS

We performed experiments with the Torcs [23], [24] racing

simulator. The aim is to complete a lap of a track as quickly

as possible. We use three different sensory modalities:

1) oRGB ∈R
12288: RGB images of 64 by 64 pixels, looking

forward from the car.

2) oT ∈R
19: Measurements of the distance to the track edge

at 10 degree intervals covering the front of the car. When

the car is off the track the measurements are -1.

3) oC ∈ R
5: The translational velocity of the car and the

rotational velocities of each of the wheels.

For all experiments, the three different sensory modali-

ties oRGB,oT,oC are embedded into a 30-dimensional shared

state-representation space s̄(o) ∈ R
30. We use the state-

representation learning cost functions described in Section II,

with both oRGB and oT as auto-encoding targets. For oRGB

we reconstruct a down-sampled image. Further details of

the neural network architecture and reinforcement learning

parameters are given in the Appendix.

As in other works, (e.g., [25]), we use a reward function

that penalizes the distance from the center of the track as well

as the velocity perpendicular to the track axis, while rewarding

the velocity along the track axis:

rt+1 = vt+1

(

cos(αt+1)−|sin(αt+1)|− |dct+1
|
)

, (12)



DE BRUIN et al.: INTEGRATING SRL INTO RL 5

with v the velocity of the car, α the angle between the car

and the track-axis and dc the distance between the car and the

middle of the track. The distance dc is normalized such that

|dc|= 1 at the edge of the track. Episodes are ended (T= 0)

when the car starts pointing in the wrong direction (cos(α)<
0), when the car stops after an initial grace period or when a

lap is completed.

We use a pool of four tracks for training and testing. When

we train an agent on one track, we test the generality of the

learned controller on the remaining three. The hypothesis is

that the SRL objectives will encourage a representation that

allows the learned policies to generalize to new tracks as well.

When we perform pre-training, the experiences are from a

separate fifth track. All reported experiments are based on

two trials per training track. Reported training performance

is therefore averaged over 8 runs, while test performance is

averaged over 24 runs.

To compare the algorithms across different tracks, we here

define the performance as the mean reward observed during an

episode, normalized between 0 and 1. For each track we define

0 as the mean reward during the first episode of the trials, when

the controllers are untrained, and 1 as the best observed mean

reward for any single episode over all experiments performed

on the same track.

V. RESULTS

We start by comparing the performance of plain reinforce-

ment learning to that of the two algorithms that include state

representation learning considered in this work. For both sim

and alt we choose cSRL = 0.5 such that the 2-norms of the

gradients of the state representation learning terms in the cost

function with respect to the state embedding vector are about

half that of the reinforcement learning term. For alt, we

consider a version with cQfix chosen such that the 2-norm of

the gradient of this term is similar to that of the reinforcement

learning cost term and a version with cQfix = 0.

From the results in Figure 3 it can be seen that all algorithms

manage to find control policies that yield good performance on

the tracks that they are trained on. When the learned controllers

are tested on different tracks however, it becomes clear that

the controllers trained by reinforcement learning alone do not

generalize well. The performance when including the state-

representation learning cost terms is significantly better. As

can be seen from Table I, the alt algorithm with the LQfix

loss term consistently produced the best performing controllers

on the training tracks, while the alt algorithm without this

loss term gave the best generalization performance on three

of the four tracks.

Sensitivity to cSRL

Since we are interested in the integration of RL and SRL,

we have investigated the effect of changing the weight cSRL

of all SRL terms compared to the RL cost term. We observed

that scaling cSRL down from 0.5 to 0.25 and 0.05 for the

sim method resulted in slightly better training performance,

with no clear difference in test performance. Overall, the

algorithms sensitivity to this hyper-parameter seems quite
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Fig. 3: Normalized performance for the rl, sim and alt

methods, as well as the alt method without the LQfix (11)

loss term. For the test performance, every 104 steps the

network parameters that gave the best training performance

up to that point are evaluated on the test tracks, without any

additional training on those tracks. The mean ± half a standard

deviation of the performance criterion from Section IV are

shown.

limited, as a change of an order of magnitude did not produce

clear performance differences. Still, adapting the scale of the

individual loss terms dynamically [26] could be useful future

work, as it could eliminate the tuning step altogether.

Learning speed

Besides the potential for regularizing the state representation

in a way that benefits generalization across domains, the other

main appeal of adding the extra state-representation learning

objectives is making the optimization problem for the state-

representation easier by providing more stable and simpler

objectives. Other authors, such as those of [8], have found

TABLE I: Best performing algorithm (of rl, sim and

alt with and without the LQfix (11) loss term) on each of

the training track / evaluation track combinations.

evaluation: track 1 track 2 track 3 track 4

training track 1 alt alt(no qfix) alt(no qfix) alt
training track 2 sim alt alt(no qfix) alt(no qfix)
training track 3 sim alt(no qfix) alt alt(no qfix)
training track 4 sim alt(no qfix) alt(no qfix) alt
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Fig. 4: The influence of the sample-reuse hyper-parameter on

the train and test performance of the rl and alt methods.

The means of the performance criterion from Section IV are

shown.

that the use of additional training objectives can speed up the

learning process, also on the training domain. While Figure 3

showed that the sim and alt methods were able to find

generalizing controllers more quickly, learning on the training

domain was slower than that of plain rl.

A likely reason for these observations is that while some of

the individual optimization problems posed by the SRL loss

terms might be simple, we are optimizing for many of them

at once, which makes the optimization more difficult. Addi-

tionally, by enforcing the physical priors we limit the space of

suitable state representations, as the state representation should

not only allow fitting the Q-values, but additionally adhere

to the SRL constraints. While this results in the improved

generalization performance, it makes finding a representation

that allows decent training performance more challenging, as

most SRL objectives do not limit the parameter search space.

To further investigate the cause of the slower learning we vary

the experience reuse and perform an ablation study of the

individual SRL loss components.

1) Experience reuse: After each training episode, the newly

observed experiences are added to the experience replay buffer

and a number of optimization steps is performed. The number

of updates is determined by the sample reuse hyper-parameter;

the expectation of the number of times each experience is
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Fig. 5: The effect on the performance of the alt algorithm of

turning off individual SRL losses. The no temporal experiment

excludes both the (inv) dynamics and the slowness / diversity

losses. The performance with all SRL losses (alt) and with

no SRL losses (rl) are shown for comparison. The mean ±
half a standard deviation of the performance criterion from

Section IV are shown.

sampled as part of a mini-batch for an update. As the SRL ob-

jectives add richer training targets and serve as regularizers, we

might expect that increasing the number of updates performed

per new experience would be beneficial, especially compared

to doing the same without the SRL objectives. To test this,

we varied the sample reuse for both the alt and the rl

algorithms from 16, which we use for all other experiments,

to 8 and 32. The results are shown in Figure 4 and show that

for our tests there is little to be gained from increasing the

sample reuse beyond 16.

2) Individual SRL losses: We are also interested in how the

individual losses contribute to both the speed of learning and

the performance of the learned controllers. Figure 5 shows an

ablation study in which, for the alt algorithm, each of the

losses is separately turned off.

While all losses contribute to learning general control poli-

cies during the early stages of learning, the auto-encoding loss

seems to hurt generalization in the later stages. Initially, this

loss might help quickly shape the convolutional feature maps

through the dense training targets. The input reconstruction

objective is however the most general objective and the
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least specialized towards reinforcement learning. While the

objective seems to help with the learning stability3, it might

hurt the test performance in the later stages, where it forces the

state representation to capture information that, while it might

help explain the variation in the sensor data on the training

track, might not be relevant to the task at hand. The other

losses all benefit the generalization performance.

The (inverse) dynamics loss can be seen from Figure 5 to

be the primary reason for the slower learning on the training

domains, as excluding it yields a similar learning curve to the

rl method. Leaving out either the (inverse) dynamics or the

slowness and diversity loss terms results in a large drop in

generalization performance.

MDP dynamics encoding

When leaving out both the slowness and diversity as well

as the (inverse) dynamics losses (no temporal in Figure 5), the

generalization performance degrades to the level of the plain

rl method. This shows that, at least on the Torcs domain,

explicitly learning to encode the temporal aspects of the

environment into the representation of the state is the most

beneficial for the generalization performance.

The incorporation of the MDP dynamics into the state repre-

sentation to aid generalization is also the idea behind successor

representations [27]–[29]. These methods use a prediction of

the occupancy of future states as a representation of the current

state, something that might be biologically plausible [30].

While for successor representations the representation is a

function of the MDP dynamics and the current policy, our

state representation learning losses are all off-policy and only a

function of the environment dynamics. However, the slowness

objective does encourage successive states in the experience

buffer to have similar representations.

Pre-training

So far we have investigated integrating state-representation

learning directly into the reinforcement learning process.

An alternative to this approach is to first learn a state-

representation and to then perform reinforcement learning,

either while keeping the representation fixed, or while allowing

it to be adjusted further. We investigate the potential of pre-

training using a fixed dataset obtained by a reinforcement

learning controller on a separate track.

In Figure 6 the performance with pre-training is compared

to the performance without. We pre-train using the SRL

objectives with or without the RL loss. Subsequently, we

train while either keeping the representation fixed (and only

changing the parameters of the RL decoder), or we perform

training with the rl or alt algorithms as usual. The results

show that while pre-training enables quick adaption to a new

track and can help generalization, the learned representation

is not good enough to allow competitive performance without

adaption of the representation in the on-line learning phase.

3Note that since the test performance is evaluated every 104 steps for
the best performing controllers up to that point, the test performance is less
sensitive to the learning stability than the training performance.
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Fig. 6: Performance when starting with a network pre-trained

with data from a separate track. The notation is pre-train

method → train method. SR fixed indicates that the state

representation is kept fixed during the on-line learning phase

and only the RL decoder is adapted. The means of the

performance criterion from Section IV are shown.

VI. CONCLUSIONS

We have investigated several ways of integrating State

Representation Learning (SRL) objectives into standard deep

Reinforcement Learning (RL). During all stages of learning,

we allowed the reinforcement learning objective to help shape

the state representation and we used the state representation

learning objectives to regularize that representation.

The regularization resulted in a small improvement on the

training domain and a significant improvement on the test

domain. While we combined state representation learning

criteria from a number of different works, little effort was

put into scaling their relative importance, and it was found

that the methods were not sensitive to the hyper-parameter

that determined the ratio between the weights of the SRL and

RL objectives. The slowness and diversity and the (inverse)

dynamics SRL objectives were found to be most beneficial

to the generalization performance, while the auto-encoding

objective benefited the learning stability and speed at the cost

of the eventual generalization performance.

Compared to combining SRL and RL directly in a single

update, our proposed method of alternating between these

objectives yielded better performance. While limiting the
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changes to the value function predictions during the SRL

updates consistently gave the best performance on the training

domain, not doing so tended to result in better performance

on the test domain.

APPENDIX

Network architectures

In this work we used the following neural network archi-

tecture. Three separate encoders were employed:

• For the camera images oRGB, the same convolutional

architecture as in [1] was used, without the final fully

connected layer but with normalization layers [31].

• For the track (range finder) measurements oT a fully

connected encoder was used with two ReLU layers of

50 and 25 units respectively.

• The car observations oC encoder, uses a single layer of

25 units with ReLU nonlinearities.

All encoders are followed by a single linear layer of size 30.

The shared representation is obtained by averaging over the

different modalities to get a single shared representation s̄(o)∈
R

30.

The decoders, for the Q-values, downsized (32x32x3) RGB

targets, and the reconstruction of the track measurements all

use an affine transformation of the state embedding.

Optimization was done with the ADAM algorithm, using a

learning rate of 3 ·10−4 and β1 = 0.9,β2 = 0.999 [32].

Reinforcement learning

Epsilon greedy exploration was used with a ε = 0.15

during training. To evaluate the performance of the learned

controllers, tests were performed on the test track for

2000 environment steps with ε = 0.05 to ensure some

variation in the roll-outs and to test robustness. We used a

discount factor of γ = 0.95. The considered actions were a ∈
{[−0.5,0.2], [0.5,0.2], [−0.2,0.4], [0.2,0.4], [0,0.6], [0,−0.8]},

with the first dimension the steering command and the second

the acceleration / break command. Experiences were stored

in a replay buffer with a capacity of 2 ·104. We used a batch

size k = 16 and sample reuse K = 16.
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