
Reinforcement Learning for Control: Performance, Stability, and Deep Approximators

Lucian Buşoniua, Tim de Bruinb, Domagoj Tolićc, Jens Koberb, Ivana Palunkod

aTechnical University of Cluj-Napoca, Romania (lucian@busoniu.net)
bDelft University of Technology, the Netherlands ({t.d.debruin,j.kober}@tudelft.nl)

cRIT Croatia, Don Frana Bulića 6, 20000 Dubrovnik, Croatia (domagoj.tolic@croatia.rit.edu)
dUniversity of Dubrovnik, Ćira Carića 4, 20000 Dubrovnik, Croatia (ivana.palunko@unidu.hr)

Abstract

Reinforcement learning (RL) offers powerful algorithms to search for optimal controllers of systems with nonlinear, possibly
stochastic dynamics that are unknown or highly uncertain. This review mainly covers artificial-intelligence approaches to RL, from
the viewpoint of the control engineer. We explain how approximate representations of the solution make RL feasible for problems
with continuous states and control actions. Stability is a central concern in control, and we argue that while the control-theoretic
RL subfield called adaptive dynamic programming is dedicated to it, stability of RL largely remains an open question. We also
cover in detail the case where deep neural networks are used for approximation, leading to the field of deep RL, which has shown
great success in recent years. With the control practitioner in mind, we outline opportunities and pitfalls of deep RL; and we
close the survey with an outlook that – among other things – points out some avenues for bridging the gap between control and
artificial-intelligence RL techniques.

Keywords: reinforcement learning, optimal control, deep learning, stability, function approximation, adaptive dynamic
programming

1. Introduction

Reinforcement learning (RL) is a model-free framework for
solving optimal control problems stated as Markov decision
processes (MDPs) (Puterman, 1994). MDPs work in discrete
time: at each time step, the controller receives feedback from
the system in the form of a state signal, and takes an action in re-
sponse. Hence, the decision rule is a state feedback control law,
called policy in RL. The action changes the system state, possi-
bly in a stochastic manner, and the latest transition is evaluated
via a reward function (negative cost). The optimal control ob-
jective is then to maximize from each initial state the (expected)
cumulative reward, known as value. The problem is thus one
of sequential decision-making, so as to optimize the long-term
performance. A first advantage of MDP solution techniques is
their generality: they can handle nonlinear and stochastic dy-
namics and nonquadratic reward functions. While MDPs and
their solutions classically work for discrete-valued states and
actions, this limitation is sidestepped by leveraging numerical
function approximation techniques, and such approximate RL
algorithms are a main focus of current RL research. Beyond its
generality, another crucial advantage of RL is that it is model-
free: it does not require a model of the system dynamics, or
indeed, even the expression of the reward function. Instead, it
learns from samples of transitions and rewards, either offline,
on a batch of samples obtained in advance from the system,
or online, by obtaining the samples directly from the system
in closed-loop, simultaneously with learning an optimal con-
troller. Thus, RL is an extremely valuable tool to find (near-
)optimal controllers for nonlinear stochastic systems, in cases

when the dynamics are either unknown or affected by signifi-
cant uncertainty.

RL is a large field, and researchers from many backgrounds
contribute to it: artificial intelligence (AI), control, robotics, op-
erations research, economics, neuroscience, etc. Many books
and survey papers have therefore been published on the topic,
from equally varied perspectives: AI, where the classical text-
book is that of Sutton and Barto (1998) with the second edi-
tion (Sutton and Barto, 2018), but also (Kaelbling et al., 1996;
Gosavi, 2009; Szepesvári, 2010; Buşoniu et al., 2010; Wier-
ing and van Otterlo, 2012); control theory (Lewis and Vrabie,
2009; Lewis and Liu, 2012); operations-research flavored op-
timal control (Bertsekas and Tsitsiklis, 1996; Bertsekas, 2012,
2017; Powell, 2012); robotics (Deisenroth et al., 2011; Kober
et al., 2013) etc. Some surveys focus on specific subareas,
like policy gradient techniques (Deisenroth et al., 2011; Grond-
man et al., 2012), function approximation (Geist and Pietquin,
2013), Bayesian formulations of RL (Ghavamzadeh et al.,
2015), hierarchical RL (Barto and Mahadevan, 2003), multia-
gent approaches (Buşoniu et al., 2008), deep RL (Arulkumaran
et al., 2017; Li, 2017) and so on.

Against this extensive backdrop, our survey provides several
contributions that we explain in the sequel, along with our or-
ganization of reviewed methods, shown in Figure 1. Among
all the perspectives on RL we focus on two, shown as the
two largest rectangles in the figure: AI, since it arguably pro-
vides the widest, most general array of algorithms, and control-
theoretic, due to our specific interest in this area. Through-
out the paper, we use the name approximate, or adaptive, dy-

Annual Reviews in Control 2018

AI methods Control-theoretic methods,
ADP: Section 4

Reinforcement learning

Deep RL
Section 5

Section 3

Approximate RL

Figure 1: Taxonomy of the approaches reviewed, shown as a Venn diagram.

namic programming (ADP) for control-theoretic methods. We
begin in Section 2 by defining the problem and covering ba-
sics that are required for all the methods discussed; this section
is therefore not shown in Figure 1. In both AI and control,
some methods are model-based, white in Figure 1; while RL
is model-free, in light gray. We discuss model-based methods
only to the extent necessary to understand RL. Note that AI re-
searchers use the name “model-based RL” for algorithms that
learn a model from data (effectively performing system identi-
fication) and then derive their solution partly using this model.
Here, to avoid confusion we call these methods model-learning
(while still classifying them as RL), and we reserve the model-
based term only for approaches that employ a model from the
start.

When RL is applied to e.g. physical systems, the state and
action variables are continuous, and due to the generality of the
dynamics and reward functions considered, it is usually impos-
sible to derive exact, closed-form representations of the value
function or control policy. Function approximation techniques
must instead be applied to represent them, and we focus Section
3 on the topic of approximate RL (medium gray). We discuss
batch, offline techiques as well as online learning methods of
two types. The first type, called temporal-difference learning,
together with the batch methods, can be seen as a sample-based
implementation of dynamic programming. Half of these meth-
ods work in a rather particular way that is atypical in control,
called policy iteration, where the long-term values of a fixed
policy are found and only then the policy is improved. The
second type of online learning comprises policy gradient meth-
ods, in which policy parameters are directly optimized from ob-
served data, similarly to extremum seeking in control (Ariyur
and Krstic, 2003) but more general.

While these approximate RL methods originate in AI, we
explain them for (and from the viewpoint of) the control en-
gineer. With the exception of some works on the relation
between RL and model-predictive control (MPC) (Bertsekas,
2005; Ernst et al., 2009; Beuchat et al., 2016; Görges, 2017),
such mixed perspectives are usually not taken, and instead
overviews focus separately either on AI methods (Kaelbling
et al., 1996; Sutton and Barto, 1998; Gosavi, 2009; Szepesvári,
2010; Buşoniu et al., 2010; Wiering and van Otterlo, 2012; Sut-
ton and Barto, 2018) or on ADP approaches (Lewis and Vra-
bie, 2009; Lewis and Liu, 2012). In contrast, our goal is to
take a control-theoretic perspective of AI techniques, and sug-

gest some ways in which the connection between the two fields
might be strengthened. With this in mind, we fully dedicate
Section 4 to control-theoretic considerations and ADP meth-
ods. It turns out that there are fundamental philosophical dif-
ferences between AI and control, stemming from the fact that
AI researchers focus almost exclusively on performance with
respect to a freely chosen reward function, while control objec-
tives revolve around stability. While ADP approaches do ad-
dress stability, many challenges remain, so that in our opinion
stable RL is effectively an open area, ripe for novel research.

When RL is combined with a particular type of function ap-
proximator, deep neural networks (DNNs), the resulting meth-
ods are known as deep reinforcement learning (DRL). This
field has recently attracted significant attention and concerted
research efforts, due to some impressive results ranging from
super-human performance in Atari games (Mnih et al., 2015)
and Go (Silver et al., 2017), to motion control in e.g. robotics.
Therefore, we dedicate Section 5 to DRL (dark grey in Figure
1). The successes of DRL, combined with the black box nature
of DNNs, have led to some practitioners using DRL algorithms
without considering the alternatives. We therefore discuss DRL
by starting from the basic assumptions underlying DNNs and
the optimization procedures used to train them. We then show
both the potential and the possible pitfalls of those assumptions
in the context of RL, and examine how popular DRL algorithms
handle the pitfalls and exploit the potential. This relatively nar-
row focus on the effects of the assumptions underpinning DRL
aims to allow (especially control) practitioners to better evalu-
ate if DRL is the right tool for their task. For a broader view
of DRL we refer the reader to the recent reviews (Arulkumaran
et al., 2017; Li, 2017).

Section 6 (not shown in the figure) closes the paper by an out-
look that gives references to related areas of research, points out
some ways of generalizing algorithms for e.g. output feedback,
and signals some important open issues in the field.

List of main symbols and notation.

x, u, X,U, r state, action, state and action spaces, reward
f , ρ, f̄ , ρ̄ dynamics, rewards, and their deterministic variants
k, n discrete time step, length of multi-step return
γ,V,Q discount factor, value function, Q-function
π, π̃ policy, stochastic policy
V∗,Q∗, π∗ optimal value function, Q-function, policy
π,T π[·] policy, Bellman mapping under policy π
T [·],T [·] Bellman optimality mapping for Q- and V-functions
Q,R,P quadratic state and action penalty, Riccati solution
α, `, t, ε learning rate, major and minor iteration, precision
δ, e, λ temporal difference, eligibility trace and parameter
Q̂, π̂ approximate Q-function and policy
φ basis functions
θ,w Q-function and policy parameters
θ−,w− the same, but for the target networks in deep RL
p,m number of Q-function and policy parameters
S, S , q dataset, number of samples, Q-value target
g matrix representation of generic mapping g

2

d, J weight or probability, objective function
·>,∇· transpose, gradient w.r.t. parameters
∼,P(·), E{·} sampling from distribution, probability, expectation
|·| , ‖·‖ , ‖·‖∞ set cardinality, generic norm, infinity norm

2. Basics of reinforcement learning

These basic concepts and algorithms of RL can be found in
standard textbooks (Sutton and Barto, 2018; Bertsekas, 2012;
Powell, 2012; Szepesvári, 2010; Buşoniu et al., 2010), so we
will only include citations for some notable results and we refer
the reader to the textbooks for other details.

2.1. Optimal control problem and its solution
RL solves a discrete-time optimal control problem that is typ-

ically formalized as a Markov decision process (MDP) (Puter-
man, 1994). Due to the origins of the field in artificial intel-
ligence, this formalism has some particularities, both in termi-
nology and in some technical choices like using maximization
and discounting. Whenever it is useful, we provide insight on
AI versus control-theoretic concepts and terminology.

An MDP consists of the state space X of the system, the ac-
tion (input) space U, the transition function (dynamics) f of
the system, and the reward function ρ (negative costs). We
leave X and U generic here, although in control they are of-
ten real vector spaces. Transitions are usually stochastic, so
that, as a result of the action uk applied in state xk at discrete
time step k, the state changes randomly to xk+1, drawn from
f (xk, uk, ·), which must define a valid probability density. The
transition function is therefore a collection of such densities,
f : X × U × X → [0,∞).

As a result of the transition to xk+1, a scalar reward rk+1 =

ρ(xk, uk, xk+1) is also received, according to the reward function
ρ : X ×U × X → R. The reward evaluates the immediate effect
of action uk, but in general does not say anything about its long-
term effects. We use notation inspired from control theory; the
usual AI notation would be (with varying capitalization) s for
state, a for action, T or P for the dynamics, and R for the reward
function.

The controller (often called agent in RL) chooses actions ac-
cording to its policy π, which we take for now to be a determin-
istic state feedback, π : X → U, so that uk = π(xk). Given a tra-
jectory x0, u0, x1, u1, . . . with the associated rewards r1, r2, . . .
the infinite-horizon discounted return along this trajectory is:

∞∑
k=0

γkrk+1 (1)

where the discount factor γ ∈ (0, 1]. The value of a policy π
from initial state x0 is the expectation of the return under the
stochastic transitions obtained while following π:

Vπ(x0) = Exk+1∼ f (xk ,π(xk),·)

 ∞∑
k=0

γkρ(xk, π(xk), xk+1)

 (2)

or stated differently, the sum of the returns of all possible tra-
jectories starting from x0, where each return is weighted by the

probability of its trajectory. Functions V(x) are called (state)
value functions, or V-functions.

The control objective is to find an optimal policy π∗ that at-
tains the maximal value function:1

V∗(x0) := max
π

Vπ(x0),∀x0 (3)

Note that any policy that attains the maxima in this equation
is optimal. An important property of MDPs is that, under ap-
propriate conditions, there exists a deterministic optimal policy
that maximizes the value, despite the fact that transitions are
stochastic (Bertsekas and Shreve, 1978). Thus, the objective
is to maximize the infinite-horizon expected discounted return.
Finite-horizon versions are possible, see (Bertsekas, 2017) for
details, but we do not cover them here. In control, one would
typically solve undiscounted problems (γ = 1) with unbounded
rewards, in which case (stability) conditions must be imposed to
ensure that values are bounded and the problem is well posed.
In RL, the discount factor is usually taken subunitary and re-
wards are assumed to be bounded, which makes the value func-
tions well-behaved irrespective of stability concerns. How to
analytically reconcile the performance-oriented philosophy of
AI-based RL with the stability focus of control is still an open
question, and we return to it in Section 4.

Instead of directly using value functions, RL often uses Q-
functions Q : X × U → R, which fix the initial action:

Qπ(x, u) = Ex′∼ f (x,u,·)
{
ρ(x, u, x′) + γVπ(x′)

}
(4)

Note that we use the prime notation to generically indicate
quantities at the next discrete time step, without reference to
any particular step k. The intuitive meaning of the Q-value
Qπ(x, u) is that of expected return when starting from state x,
applying the first action u, and following π thereafter. The op-
timal Q-function Q∗ is defined using V∗ on the right hand side
of (4). The reason for preferring Q-functions is simple: once Q∗

is available, an optimal policy can be computed easily, by se-
lecting at each state an action with the largest optimal Q-value:

π∗(x) ∈ arg max
u

Q∗(x, u) (5)

When there are multiple maximizing actions, any of them is
optimal. In contrast, the formula to compute π∗ from V∗ is
more complicated and – crucially – involves a model, which
is usually unavailable in RL. In general, for any Q-function,
a policy π that satisfies π(x) ∈ arg maxu Q(x, u) is said to be
greedy in Q. So, finding an optimal policy can be done by
first finding Q∗, and then a greedy policy in this optimal Q-
function. Note that the state value functions can be easily
expressed in terms of Q-functions, Vπ(x) = Qπ(x, π(x)), and
V∗(x) = maxu Q∗(x, u) = Q∗(x, π∗(x)).

The Q-functions Qπ and Q∗ are recursively characterized
by the Bellman equations, which are a consequence of the Q-
function definitions, and have central importance for RL algo-
rithms. The Bellman equation for Qπ states that the value of

1Whenever the set in which an object ranges is obvious from the context,
we leave it implicit. Here, for example, the set is that of all possible policies –
functions from x to u.

3

taking action u in state x under the policy π equals the expected
sum of the immediate reward and the discounted value achieved
by π in the next state:

Qπ(x, u) = Ex′∼ f (x,u,·)
{
ρ(x, u, x′) + γQπ(x′, π(x′))

}
(6)

The Bellman optimality equation characterizes Q∗, and states
that the optimal Q-value of action u taken in state x equals the
sum of the immediate reward and the discounted optimal value
obtained by the best action in the next state:

Q∗(x, u) = Ex′∼ f (x,u,·)

{
ρ(x, u, x′) + γmax

u′
Q∗(x′, u′)

}
(7)

We will also interpret the right-hand side of each Bellman equa-
tion as a mapping applied to the Q-function, denoted T π for (6)
and simply T for (7). Thus, the Bellman equations may be
written as fixed-point relations in the space of Q-functions,
Qπ = T π[Qπ] and Q∗ = T [Q∗], but we may also choose to
apply these mappings to other, arbitrary Q-functions.

It is instructive to examine the deterministic special case
of the framework, as control-theoretic formulations of opti-
mal control are usually deterministic. In that case, the den-
sity f (x, u, ·) assigns all the probability mass to a unique next
state x′, leading to deterministic dynamics x′ = f̄ (x, u), where
now f̄ : X × U → X. Since x′ is now fixed in the reward
function as well, we may also simplify the reward function to
ρ̄(x, u) = ρ(x, u, f̄ (x, u)), with ρ̄ : X × U → R. The expectation
in the V- and Q-function definitions (2) and (4) disappears as a
single, deterministic trajectory remains possible, with a return
of the form (1). The Bellman optimality equation (7) becomes:

Q∗(x, u) = ρ̄(x, u) + γmax
u′

Q∗(f̄ (x, u), u′) (8)

As an example, consider the linear quadratic case, in which
X = Rp, U = Rq, f̄ (x, u) = Ax + Bu, and ρ̄(x, u) = −x>Qx −
u>Ru (note again that rewards are equal to negative costs). The
Bellman optimality equation boils down to the familiar Riccati
equation, which in the discounted case is (Bertsekas, 2012):

P = A>[γP − γ2PB(γB>PB + R)−1B>P]A + Q. (9)

The optimal policy is a linear state feedback, π∗(x) = Lx, where

L = −γ(γB>PB + R)−1B>PA. (10)

To avoid introducing unfamiliar notation for symbols with long-
established meanings both in RL and control theory, we use
different fonts, e.g. Q for Q-function versusQ for state weights,
where the latter font indicates the control-theoretic meaning.

2.2. Offline model-based methods for finite state-action spaces
RL tackles general nonlinear dynamics and nonquadratic re-

wards, so analytical solutions like in the linear quadratic case
are no longer possible, and numerical algorithms must be used.
The basic methods readily work for state and action spaces X,
U consisting of a finite number of discrete elements. The ratio-
nale is that exact representations of the Q-functions and policies
are possible in this case. Note that since X is finite and hence

countable, the transition function now collects probability mass
functions: f (x, u, x′) is the probability of transitioning to x′ as
a result of u in x, and f : X × U × X → [0, 1].

We start from two methods that sit at the basis of model-
free, RL algorithms: value and policy iteration. These methods
work offline and are model-based, i.e. they require the knowl-
edge of f and ρ. For Q-functions, value iteration turns the
Bellman optimality equation (7) into an iterative assignment,
where the unknown optimal Q-function on the right-hand side
is replaced by the current iterate. This procedure is called
Q-iteration2 and shown in Algorithm 1, where the expectation
has been written as a sum owing to the countable states, and
‖Q‖∞ := maxx,u |Q(x, u)|. If rewards are bounded and the dis-
count factor is subunitary, the updates of this algorithm are con-
tractive and will asymptotically converge to the unique fixed
point given corresponding to the optimal Q-function Q∗. In
practice, the algorithm is stopped once the iterates no longer
change significantly, so it returns an estimate Q̂∗ and a corre-
sponding greedy policy. Note that Q-iteration is, in fact, classi-
cal dynamic programming, but applied “forward in iterations”
rather than backward in time. After a sufficient number of it-
erations, the steady-state infinite-horizon solution is (approxi-
mately) reached.

Algorithm 1 Q-iteration.
Input: f , ρ, γ, threshold ε

1: initialize Q-function, e.g. Q0(x, u) = 0 ∀x, u
2: repeat at every iteration ` = 0, 1, 2, . . .
3: for every (x, u) pair do
4: Q`+1(x, u) =∑

x′ f (x, u, x′)
[
ρ(x, u, x′) + γmaxu′ Q`(x′, u′)

]
5: end for
6: until ‖Q`+1 − Q`‖∞ ≤ ε

Output: Q̂∗ = Q`+1, π̂
∗(x) greedy in Q̂∗

Unlike Q-iteration, policy iteration works explicitly on poli-
cies, where at each iteration the Q-function of the current pol-
icy π` is computed (policy evaluation), and then a new policy
π`+1 is found that is greedy in Qπ` (policy improvement). The
procedure is given in Algorithm 2. Assuming policy evalua-
tion is exact, each policy improvement is guaranteed to find a
strictly better policy unless it is already optimal, and since in
finite spaces there is a finite number of possible policies, the
algorithm converges in a finite number of iterations.

Algorithm 2 Policy iteration.
Input: γ, f , ρ,

1: initialize policy π0
2: repeat at every iteration ` = 0, 1, 2, . . .
3: find Qπ` , the Q-function of π` . policy evaluation
4: π`+1(x) = arg maxu Qπ` (x, u),∀x . policy improvement
5: until π`+1 = π`+1

Output: π∗ = π`, Q∗ = Qπ`

2The names of important methods and algorithms are underlined.

4

Algorithm 3 provides an iterative policy evaluation method
that, similarly to Q-iteration, turns the Bellman equation (6)
into an assignment. This algorithm has similar convergence
properties to Q-iteration.

Algorithm 3 Iterative policy evaluation.
Input: π, f , ρ, γ, threshold ε

1: initialize Q-function, e.g. Q0(x, u) = 0 ∀x, u
2: repeat at every iteration t = 0, 1, 2, . . .
3: for every (x, u) pair do
4: Qt+1(x, u) =∑

x′ f (x, u, x′)
[
ρ(x, u, x′) + γQt(x′, π(x′))

]
5: end for
6: until ‖Qt+1 − Qt‖∞ ≤ ε

Output: Q̂π = Qt+1

When there are not too many states and actions, it is also
possible to explicitly solve the Bellman equations (6) (for pol-
icy evaluation) or (7) (for Q∗), since they are in fact a system
of equations with the Q-values as the unknowns. For policy
evaluation, the equations are linear so they can be solved rela-
tively cheaply. For the optimal Q-function, they are nonlinear,
but with certain relaxations they can still be feasibly solved –
see Section 4.2 later on.

2.3. Online temporal-difference RL for finite spaces

We discuss next temporal-difference algorithms, the most
popular type of RL. There are many such algorithms, and we
select just a few common ones. All methods below are model-
free (i.e. they do not need to know f , ρ) and online (i.e. they can
work alongside the system). We remain in the finite-space case
in this section.

Perhaps the most popular RL algorithm is Q-learning
(Watkins and Dayan, 1992). It starts from an arbitrary initial
Q-function Q0, where the index now signifies discrete time k,
and updates it using observed state transitions and rewards, i.e.
data tuples of the form (xk, uk, xk+1, rk+1):

Qk+1(xk, uk) = Qk(xk, uk)+
αk[rk+1 + γmax

u′
Qk(xk+1, u′) − Qk(xk, uk)] (11)

where αk ∈ (0, 1] is the learning rate. This update applies an
incremental correction to Qk(xk, uk), equal to αk times the tem-
poral difference in square brackets. The latter difference is be-
tween the updated estimate rk+1 + γmaxu′ Qk(xk+1, u′) of the
optimal Q-value of (xk, uk), based on information at the next
step, and the current estimate Qk(xk, uk). The updated estimate
is a sample of the right-hand side of the Q-iteration update in
line 4 of Algorithm 1, in which the expectation over next states
is replaced by the observed, random transition sample xk+1 and
its corresponding received reward rk+1. The temporal differ-
ence is therefore (a sample of) the error between the two sides
of the Bellman optimality equation (7), and Q-learning can be
understood as an online, incremental, stochastic-approximation
version of Q-iteration.

As the number of transitions k grows to infinity, Q-learning
asymptotically converges to Q∗ if (i)

∑∞
k=0 α

2
k is finite and∑∞

k=0 αk is infinite, while (ii) all the state-action pairs are vis-
ited infinitely often (Watkins and Dayan, 1992; Jaakkola et al.,
1994). Condition (i) is standard in stochastic approximation: it
requires that learning rates shrink but not too quickly. A valid
example is αk = 1/k. In practice, the learning rate schedule re-
quires tuning, because it influences the convergence rate (num-
ber of samples required to perform well).

To satisfy condition (ii), firstly any state must be reachable
from any other state (or otherwise, multiple experiments must
be run with richly selected initial states). Secondly, it is not suf-
ficient to apply a deterministic policy to obtain the samples, as
that would not attempt all the actions in a given state, and may
not dynamically reach the entire state space either. Instead, the
policy must apply exploration: e.g. actions are selected ran-
domly, and each action has nonzero probability at any state.
Thus the policy becomes stochastic, π̃ : X × U → [0, 1]. A
classical choice (Sutton and Barto, 2018) is the ε-greedy pol-
icy, which applies a greedy action with probability 1 − ε, and
otherwise selects an action uniformly randomly, leading to the
policy probabilities:

π̃(x, u) =

1 − ε + ε
|U | for some u ∈ arg maxu′ Q(x, u′)

ε
|U | for the other actions

(12)

Here ε ∈ (0, 1] is the exploration probability, and |·| denotes set
cardinality. Another option is Boltzmann, or softmax, explo-
ration, which selects an action u with probability:

π̃(x, u) =
eQ(x,u)/τ∑
u′ eQ(x,u′)/τ (13)

Here τ is the exploration temperature, and by changing τ the
policy can be tuned from fully greedy (in the limit as τ → 0)
to fully random (as τ → ∞). Importantly, both (12) and (13)
strive to balance exploration with the requirement of perform-
ing well while controlling the system – exploitation of current
knowledge as represented by the Q-function. This exploration-
exploitation dilemma is central to all online RL algorithms.
Solving it for the two policies above boils down to selecting
good schedules εk or τk, which is a nontrivial tuning problem in
practice. Note that exploration in RL is a field in its own right,
and we cannot do it justice in this survey; some pointers to ma-
jor classes of exploration techniques are provided in Section 6.

From a control point of view, exploration is a persistence of
excitation condition: even if Q-learning never uses an explicit
model, a model is still implicitly present in the Q-values, and
persistent excitation is needed to “identify” it. Note also that
while in control problems the reward function would be known,
Q-learning does not make this assumption and learns about the
rewards at the same time as about the dynamics. A final re-
mark is that, as long as conditions (i) and (ii) above are satisfied,
Q-learning works no matter what policy is actually applied to
control the system. Q-learning can therefore be seen as always
evaluating the greedy policy, while the behavior policy can be
anything exploratory – a property called being off-policy. Al-
gorithm 4 presents Q-learning with an arbitrary behavior policy.

5

Algorithm 4 Q-learning.
1: initialize Q-function, e.g. Q0(x, u) = 0 ∀x, u
2: measure initial state x0
3: for every time step k = 0, 1, 2, . . . do
4: select action uk with an exploratory policy
5: apply uk, measure next state xk+1 and reward rk+1
6: Qk+1(xk, uk) = Qk(xk, uk)+

αk[rk+1 + γmaxu′ Qk(xk+1, u′) − Qk(xk, uk)]
7: end for

Along the lines of Q-learning, one can derive an online RL
algorithm for evaluating a given policy π̃:

Qk+1(xk, uk) = Qk(xk, uk)+
αk[rk+1 + γQk(xk+1, uk+1) − Qk(xk, uk)] (14)

assuming that actions are chosen with π̃, which is exploratory
so that all actions are attempted (plus the standard learning rate
conditions). Note the replacement of the maximizing action
with the action actually chosen by the policy, which means the
algorithm aims to solve the Bellman equation (6) for π̃ (or
rather, an extended variant of (6) that also takes the expecta-
tion over actions according to π̃). This algorithm is called sim-
ply temporal difference, or TD, and we may imagine a model-
free version of policy iteration (Algorithm 2) where TD runs
in-between policy improvements for long enough intervals to
allow Q-function convergence (a model-free version of Algo-
rithm 3).

It turns out, however, that we may dispense with the require-
ment to converge before improvement, and in fact we may im-
prove the policy at each step – implicitly, by selecting actions
based on the current Q-function, e.g. with the ε-greedy or soft-
max policies (12), (13). Such a scheme is called optimistic pol-
icy improvement, and using it in combination to the update (14)
leads to the SARSA algorithm (Rummery and Niranjan, 1994),
named for the structure of the data tuple used by each update
(xk, uk, xk+1, rk+1, uk+1) – or state, action, reward, state, action.
It is given in Algorithm 5. In order to converge to Q∗, SARSA
requires the same conditions as Q-learning, and in addition that
the exploratory policy being followed asymptotically becomes
greedy, for instance by letting ε or τ go to 0 in ε-greedy or soft-
max (Singh et al., 2000). Note that unlike Q-learning, SARSA
always aims to evaluate the policy that it follows, so it is on-
policy.

Algorithm 5 SARSA.
1: initialize Q-function, e.g. Q0(x, u) = 0 ∀x, u
2: measure initial state x0, choose arbitrary action u0
3: for every time step k = 0, 1, 2, . . . do
4: apply uk, measure next state xk+1 and reward rk+1
5: choose uk+1 with exploratory policy based on Qk

6: Qk+1(xk, uk) = Qk(xk, uk)+
αk[rk+1 + Qk(xk+1, uk+1) − Qk(xk, uk)]

7: end for

The following two methods are often used to increase the

convergence rate of temporal difference algorithms. The first
method exploits the fact that the latest transition is the causal re-
sult of the entire preceding trajectory, by marking visited state-
action pairs with eligibility traces e : X × U → [0,∞), see
e.g. Singh and Sutton (1996). The traces are initially zero:
e0(x, u) = 0 ∀x, u, and at each step the trace of the currently
visited state-action pair is either set to 1 (in the replacing traces
variant), or incremented by 1 (accumulating). For all other
states, the trace decays with λγ, where λ ∈ [0, 1] is a param-
eter. Formally:

ek+1(xk, uk) =

1 if replacing
ek(xk, uk) + 1 if accumulating

ek+1(x, u) = λγek(x, u) for all (x, u) , (xk, uk)

Note that state-action pairs become exponentially less eligi-
ble as they move further into the past. Consider e.g. the TD
algorithm (14), and denote the temporal difference by δk =

rk+1 + γQk(xk+1, uk+1) − Qk(xk, uk). The traces are used by up-
dating at step k all eligible state-action pairs using this temporal
difference, weighted by the traces:

Qk+1(x, u) = Qk(x, u) + αkδkek+1(x, u), ∀x, u (15)

So the latest transition sample is used to update many Q-values
instead of one, increasing data efficiency. The algorithm ob-
tained is called TD(λ), and it reduces to the original one when
λ = 0. The same idea can be applied in a straightforward fash-
ion to SARSA and Q-learning. Although for simplicity we in-
troduced traces heuristically here, they have a deep analytical
justification in terms of using longer-horizon updates than just
the single-step rewards (Sutton and Barto, 2018).

The second method is called experience replay (Lin, 1992).
Rather than using each transition only once, when it is ob-
served, all transitions are saved in memory and “replayed”, i.e.
the original learning update is applied to them as if they would
have been observed again. Two choices drive experience re-
play: how many stored transitions are replayed at each true step
k; and how transitions are selected (e.g. randomly, forward or
backward along trajectories). For the classical algorithms in
this section, it is better to replay trajectories backwards, as this
better propagates reward information.

3. Approximate reinforcement learning

3.1. Approximate representations
The methods in Section 2 require that Q-functions and poli-

cies are exactly represented – e.g. as a table indexed by the dis-
crete states and actions. In typical control problems, states and
actions are continuous, exact representations are in general im-
possible, and function approximation must be used.

Depending on the algorithm, the Q-function and/or the policy
must be approximated, and we denote their approximate ver-
sions by Q̂ and π̂. Often, parametric approximators are used, in
which case the Q-function parameters are denoted by θ ∈ Rp,
and approximate Q-values by Q̂(x, u; θ). For the policy, the pa-
rameters are w ∈ Rm. Linearly parameterized architectures are

6

popular since they lead to relatively simple algorithms and anal-
ysis. For the Q-function, such a parametrization is written:

Q̂(x, u; θ) =

p∑
i=1

φi(x, u)θi = φ>(x, u)θ (16)

where φ(x, u) = [φ1(x, u), . . . , φp(x, u)]> is a vector of basis
functions (BFS), such as radial BFs or polynomial terms. A
particularly simple linear architecture is aggregation, where the
BFs are binary and equal to 1 in disjoint areas of the state-action
space; thus every point in such an area has the same Q-value.

One example of nonlinear parametrization is a BF expan-
sion in which the BF shapes themselves are also parameterized
(Bertsekas and Yu, 2009), e.g. by the centers and radii for radial
BFs. However, neural networks are probably the most widely
used type of nonlinear approximator (Bertsekas and Tsitsiklis,
1996; Riedmiller, 2005), with deep networks becoming very
popular recently (Mnih et al., 2015). The latter directly take
images as their state input, and consist of many layers with spe-
cific structures; they are the focus of Section 5 later on. In the
adaptive dynamic programming field (Lewis and Liu, 2012),
approximators are also traditionally called neural networks, but
usually the networks have one linear layer (or only the last lin-
ear layer is adapted), so in fact they boil down to linear approx-
imators.

Many RL techniques also use nonparametric approximators,
which vary their shape and number of parameters as a function
of the dataset, e.g. RL with kernel regression (Ormoneit and
Sen, 2002; Farahmand et al., 2009), Gaussian processes (Engel
et al., 2005), regression trees (Ernst et al., 2005), etc.

The main advantage of function approximation is the re-
duction of the (generally intractable) problem of learning the
continuous-argument Q-function or policy to the tractable prob-
lem of learning a parameter vector. There is also a less obvious
benefit: as each parameter contributes to estimating the value
of many state-action pairs, any transition from these pairs will
help learning that parameter. This reduces the number of sam-
ples needed to learn, and is called generalization.

In the sequel, we describe some major approximate RL meth-
ods, see also Sutton and Barto (2018); Bertsekas (2012); Pow-
ell (2012); Buşoniu et al. (2010) for extensive reviews of the
area. We start with offline methods in Section 3.2, and online
temporal-difference RL in Section 3.3. The techniques we dis-
cuss in these sections assume the Q-function approximator is
such that greedy actions can be efficiently found, see (5), and
use this fact to sidestep the requirement of representing poli-
cies. Instead they simply find greedy actions on demand, at any
state where they are needed. The usual way to achieve this is to
discretize the actions into a few values, and then maximize by
enumeration. For linear approximation (16), this can be imag-
ined as removing the u parameter from the BFs and instead
replicating state-dependent BFs for each discrete action, with
different associated parameters. More flexible solutions exist,
e.g. differentiating polynomial approximations to find the max-
ima, or performing binary search in the action space (Pazis and
Lagoudakis, 2009). In Section 3.4, we discuss policy gradient
techniques, which explicitly search over parameterized policies

and do not need to maximize over actions.

3.2. Offline approximate RL

We describe two popular offline algorithms from the value
and policy iteration class, respectively. While in Section 2.2
these methods were model-based, their extensions here use a
given dataset of transition samples, so they become model-free
RL when the samples are obtained from the system. Of course,
if a model is in fact available, it can be used to generate the sam-
ples. The dataset is denoted S = {(x j, u j, x′j, r j)| j = 1, . . . , S },
where x′j is sampled from f (x j, u j, ·) and r j is the corresponding
reward. The dataset should be sufficiently informative to allow
finding a good solution – an exploration requirement.

The first algorithm is fitted Q-iteration, and was popular-
ized under this name by Ernst et al. (2005), although its ba-
sic principle was already known. It is applicable to any type
of Q-function approximator, although for clarity we will use
a parametric one Q̂(x, u; θ). At iteration `, when the param-
eters are θ`, fitted Q-iteration computes the Bellman target
q`+1, j = r j + γmaxu′ Q̂(x′j, u

′; θ`) for each transition sample.
Then, least-squares regression is run on the input-output sam-
ples (x j, u j) 7→ q`+1, j to obtain the next parameters θ`+1. Algo-
rithm 6 summarizes the procedure. The target Q-value is exact
in the deterministic case, when the Bellman equation is (8), and
it is a sample of the right-hand side of (7) in the stochastic case.
In the latter case, least-squares regression should approximate
the correct expected value.

Algorithm 6 Fitted Q-iteration.
Input: γ, dataset S

1: initialize parameter vector, e.g. θ0 ← 0
2: repeat at every iteration ` = 0, 1, 2, . . .
3: q`+1, j = r j + γmaxu′ Q̂(x′j, u

′; θ`), for j = 1, . . . , S

4: θ`+1 = arg minθ
∑S

j=1

[
q`+1, j − Q̂(x j, u j; θ)

]2

5: until θ`+1 is satisfactory
Output: Q̂∗, π̂∗ greedy in Q̂∗ (implicitly represented via Q̂∗)

An asymptotic guarantee can be provided for fitted Q-
iteration by first defining an error ε such that at any itera-
tion `,

∥∥∥T [Q̂(·, ·; θ`)] − Q̂(·, ·; θ`+1)
∥∥∥
∞
≤ ε. Thus ε character-

izes the worst-case error between the exact Q-functions that
the Bellman mapping T would compute, and the actual, ap-
proximate Q-functions found by the algorithm. Then, fitted
Q-iteration asymptotically reaches a sequence of approximate
Q-functions that each satisfy

∥∥∥Q̂ − Q∗
∥∥∥
∞
≤ ε

1−γ (Bertsekas and
Tsitsiklis, 1996). While this bound holds for the Q-function
and not the greedy policy, the following general result makes
the connection. If an approximately optimal Q-function Q̂∗

is available, then a greedy policy π̂∗ in this Q-function satis-
fies

∥∥∥Qπ̂∗ − Q∗
∥∥∥
∞
≤

2γ
1−γ

∥∥∥Q̂∗ − Q∗
∥∥∥
∞

. Thus, overall, fitted Q-

iteration asymptotically satisfies
∥∥∥Qπ̂∗ − Q∗

∥∥∥
∞
≤

2γε
(1−γ)2 . So-

called finite-sample guarantees, which work for other norms
and make explicit the dependence on the number of samples
and iterations, are given by Munos and Szepesvári (2008).

7

Fitted Q-iteration may not converge to some fixed Q-
function. Under stronger conditions, including that the approxi-
mator does not extrapolate sample values, fitted Q-iteration up-
dates are contractive and converge to a fixed point (Gordon,
1995; Ormoneit and Sen, 2002). A simple such case satisfying
the condition is interpolation on a grid, with the samples equal
to the grid points.

Consider next policy iteration, and recall from Sec-
tion 3.1 that policy approximation is sidestepped by com-
puting greedy actions on demand. Thus the core fea-
ture of approximate policy iteration is the policy evalua-
tion procedure. A fitted algorithm like for Q-iteration may
be used, but it turns out that if the approximator is lin-
ear (16), more efficient procedures can be devised by ex-
ploiting the linearity of the Bellman equation (6). One
such procedure is least-squares temporal difference (LSTD),
introduced for value functions V by Bradtke and Barto
(1996). When applied to find Q-functions, LSTD leads
to least-squares policy iteration (LSPI) (Lagoudakis and Parr,
2003). We return temporarily to discrete spaces, since the
derivation is better understood there, but the final method ap-
plies to the continuous case as well. Let the discrete states
and actions be denoted by their index x = 1, . . . ,N and u =

1, . . . ,M. We start by rewriting the Bellman mapping T π, see
again (6):

T π[Q](x, u) = ρ̄(x, u) + γ

N∑
x′=1

f (x, u, x′)Q(x′, π(x′)) (17)

where ρ̄(x, u) =
∑N

x′=1 f (x, u, x′)ρ(x, u, x′) are the expected
rewards. Now, since the solution to the Bellman equation
Qπ = T π[Qπ] is generally not representable by the chosen ap-
proximator, the idea in LSTD is to solve a projected version
Q̂ = P[T π[Q̂]], in which the result of T π is brought back into the
space of representable Q-functions via a weighted least-squares
projection P[Q] = arg minQ̂

∑
x,u d(x, u)

∣∣∣Q(x, u) − Q̂(x, u)
∣∣∣2.

Here, d gives the weights of state-action pairs.
To exploit linearity, define now a vector form of the Q-

function, Q ∈ RNM , in which Qxu = Q(x, u) for scalar integer
index xu = x + (u − 1)N. Then, (17) can be rewritten in matrix
form:

Tπ[Q] = ρ + γ fQ (18)

where ρ collects expected rewards in a similar way to Q,
and f ∈ RNM×NM is a matrix of transition probabilities be-
tween state-action pairs. For a deterministic policy, f xu,x′u′ =

f (x, u, x′) if u′ = π(x′), and 0 elsewhere, but the formalism
generalizes to stochastic, exploratory policies.

Further, by collecting the basis function values in a matrix
Φ ∈ RNM×p, Φxu,i = φi(x, u), an approximate Q-function is writ-
ten Q̂ = Φθ. Weighted least-squares projection can be written
in closed form as P = Φ(Φ>dΦ)−1Φ>d, where d is the weight
vector, with dxu = d(x, u). Finally, replacing the matrix forms Q̂
and P into (18), the projected Bellman equation becomes after
a few manipulations:

(Φ>dΦ − γΦ>d fΦ)θ = Φ>dρ, or equivalently Aθ = b

with A := Φ>dΦ − γΦ>d fΦ ∈ Rp×p, and b := Φ>dρ ∈ Rp.
While this equation involves the model, A and b can fortunately
be estimated in a model-free fashion, from samples drawn ac-
cording to the weights d (reinterpreted as probabilities). The
formulas are given directly in Algorithm 7, where lines 3–5
comprise LSTD. Recall that the algorithm works for continu-
ous variables as well.

Algorithm 7 Least-squares policy iteration.
Input: γ, dataset S

1: initialize policy π0
2: repeat at every iteration ` = 0, 1, 2, . . .
3: A` =

∑S
j=1 φ(x j, u j)

[
φ>(x j, u j) − γφ>(x′j, π`(x′j))

]
4: b` =

∑S
j=1 φ(x j, u j)r j

5: solve A`θ` = b` to get Q-function parameters θ`
6: π`+1(x) = arg maxu Q̂(x, u; θ`),∀x (implicitly)
7: until π`+1 is satisfactory

Output: π̂∗ = π`+1

The asymptotic properties of LSPI, and more generally of
approximate policy iteration, are similar to those of fitted
Q-iteration. In particular, the algorithm may never reach a
fixed point, but if at each iteration the policy evaluation er-
ror

∥∥∥Q̂(x, u; θ`) − Qπ`
∥∥∥
∞

is upper-bounded by ε, then the al-
gorithm eventually reaches a sequence of policies such that
‖Qπ − Q∗‖∞ ≤

2γε
(1−γ)2 (Lagoudakis and Parr, 2003). The policy

evaluation error can be specifically characterized for LSTD, see
Lazaric et al. (2012) for a finite-sample analysis of LSTD and
LSPI, and Buşoniu et al. (2011) for a review. In practice, when
the algorithms converge, LSPI often needs fewer iterations than
fitted Q-iteration, mirroring a similar relationship for exact pol-
icy and value iteration. An alternative to LSTD is an iterative
algorithm called LS policy evaluation, analyzed by Yu and Bert-
sekas (2009); while instead of solving the projected equation
we may also minimize the difference between the two sides
of (6), leading to Bellman residual minimization, see Scherrer
(2010) for a comparison between this and the projection-based
algorithms.

Research on batch RL methods is ongoing, with recent de-
velopments in e.g. nonparametric approximation (Farahmand
et al., 2016), exploitation of low-level controllers called “op-
tions” (Mann et al., 2015), and combinations with deep learning
(Lee et al., 2017). Combinations of this latter type are presented
in detail in the upcoming Section 5, although we already note
that the usage of so-called minibatches of samples in deep RL
is closely connected to fitted Q-iteration.

3.3. Online, temporal-difference approximate RL

To derive a simple variant of approximate Q-learning, we
will reinterpret the term rk+1 + γmaxu′ Qk(xk+1, u′) in the orig-
inal Q-learning (11) as a target of the incremental update. In
the approximate case, we replace this target by qk+1 = rk+1 +

γmaxu′ Q̂(xk+1, u′; θk) which has the same form as the Bellman
target from fitted Q-iteration, except that now instead of an of-
fline dataset we use samples observed online, and update the

8

parameters at each step k. The main idea is to perform gra-
dient descent on the squared error between this target and the
approximate Q-value (Sutton and Barto, 1998, Ch. 8):

θk+1 = θk − αk∇

(
1
2

[qk+1 − Q̂(xk, uk; θk)]2
)

= θk + αk[qk+1 − Q̂(xk, uk; θk)]∇Q̂(xk, uk; θk)

= θk + αk
[
rk+1 + γmax

u′
Q̂(xk+1, u′; θk)

− Q̂(xk, uk; θk)
]
∇Q̂(xk, uk; θk)

(19)

where the target was held constant in the first two equalities,
the gradient is always with respect to the parameters, and no-
tation ∇g(θk) means that the gradient of g is evaluated at point
θk. Note that an approximate temporal difference δ̂k has been
obtained in the square brackets. For linear parameterizations
(16), the derivative of Q(xk, uk; θ) is very simple: it is equal to
the vector of basis functions φ(xk, uk). We do not provide ex-
plicit pseudocode of the algorithm, since it is easily obtained by
replacing the exact update in Algorithm 4 by (19).

An approximate SARSA variant is similarly derived:

θk+1 = θk + αk[rk+1 + γQ̂(xk+1, uk+1; θk)

− Q̂(xk, uk; θk)]∇Q̂(xk, uk; θk)

where the policy is based on Q̂. If the policy is held constant,
then this update performs policy evaluation, and it becomes a
gradient-based, approximate version of the TD method.

Just like in the exact case, exploration is required by these
approximate online methods, and the learning rate and explo-
ration schedules are essential for learning speed. Experience
replay extends in the obvious way: by reapplying the gradient-
based updates to the stored samples. Eligibility traces e ∈ Rp

now accumulate the impact of the parameters on the updates,
as measured by the gradients: ek+1 = γλek + ∇Q̂(xk, uk; θk),
where the traces are initialized at zero. Then, the updates
are changed so that the approximate temporal difference is
weighted by the eligibility trace instead of just the latest gra-
dient: θk+1 = θk + δ̂kek+1. By plugging in the appropriate δ̂k,
this procedure applies equally well to approximate SARSA, Q-
learning, and TD. For clarity, Algorithm 8 exemplifies the com-
plete gradient-based SARSA(λ) method. Note that LSTD and
other methods in the least-squares family can also be extended
to use eligibility traces (Thiery and Scherrer, 2010).

Algorithm 8 Approximate SARSA(λ).
1: initialize parameters, e.g. θ0 = 0p, and traces e0 = 0p

2: measure initial state x0, choose arbitrary action u0
3: for every time step k = 0, 1, 2, . . . do
4: apply uk, measure next state xk+1 and reward rk+1
5: choose uk+1 with explor. policy based on Q̂(xk+1, ·, θk)
6: δ̂k = rk+1 + γQ̂(xk+1, uk+1; θk) − Q̂(xk, uk; θk)
7: ek+1 = γλek + ∇Q̂(xk, uk; θk)
8: θk+1 = θk + δ̂kek+1
9: end for

While the derivations above are heuristic, the overall idea is

sound. Tsitsiklis and Van Roy (1997) have analyzed approxi-
mate TD, while a comparison between gradient-based TD and
LSTD from Section 3.2 is provided by Yu and Bertsekas (2009).
Convergence of approximate Q-learning has been proven for
linear approximators, initially under the restrictive requirement
that the policy followed is constant (Melo et al., 2008). This
is of course unrealistic, and finding good off-policy, online ap-
proximate RL methods has been the focus of many research
efforts, see e.g. Munos et al. (2016); Sutton et al. (2016). Most
of the effort in online RL in the last few years has however been
focused on deep approximation, and we postpone that discus-
sion until the dedicated Section 5.

3.4. Policy gradient and actor-critic methods
The approximate RL algorithms reviewed so far require fast

maximization of Q-functions over actions, which usually means
the actions are discretized, as explained in Section 3.1. Exploit-
ing this, policies are represented implicitly, via the Q-functions.
Both of these features may sometimes be undesirable in control
problems. To accurately stabilize to some state or track some
trajectory, continuous actions are generally needed. Further-
more, some prior knowledge on the policy may be available,
which may be included in a policy parametrization (e.g. the
policy may be initialized to a linear controller that is known
to work locally), whereas translating such prior knowledge into
an initial shape of the Q-function is highly nontrivial.

Policy gradient techniques solve these issues by choosing to
represent the policy explicitly, almost always with a parametric
approximator and including an exploration term. The policy is
then π̂(x, u; w), where for each x ∈ X and w ∈ Rm, π̂(x, ·; w) is a
probability density over the continuous action space U. Often,
this density is a Gaussian centered on some parameterized de-
terministic action. Below we review some major ideas in policy
gradients, see Deisenroth et al. (2011); Grondman et al. (2012)
for dedicated reviews of the area.

As hinted by the name, policy gradient methods perform gra-
dient ascent on a scalar objective function, defined as the ex-
pected return when drawing the initial state from a distribution
d0(x) (while the actions and next states follow their own distri-
butions):

J(w) = Ex0∼d0(·), uk∼π̂(xk ,·;w),
xk+1∼ f (xk ,uk ,·)

 ∞∑
k=0

γkρ(xk, uk, xk+1)

=

∫
X

dw(x)
∫

U
π̂(x, u; w)

∫
X

f (x, u, x′)ρ(x, u, x′)dx′dudx

The second formula rewrites the expectation using the so-called
discounted state distribution dw(x) =

∑∞
k=0 γ

kP(xk = x), which
sums up the probabilities of encountering that state at each sub-
sequent step, properly discounted for that step (Sutton et al.,
2000). This distribution is superscripted by w as it depends
(through the policy) on the parameters. By changing dw, the
discounted returns to be optimized can be replaced by average
rewards over time, and many policy gradient methods are origi-
nally given for such average rewards. Note that by choosing d0,
we may focus the algorithm on interesting initial state regions,
or even just a few specific states.

9

The core gradient ascent update is then written:

w`+1 = w` + α`∇J(w`)

where ` is the iteration, and the learning rates α` must obey the
usual stochastic approximation conditions (i)-(ii) from Section
2.3. The key question is how to estimate the gradient in this for-
mula. Many methods use Monte-Carlo estimation with trajec-
tories sampled using the current policy, often called roll-outs.
For instance, REINFORCE (Williams, 1992) and GPOMDP
(Baxter and Bartlett, 2001) are two classical such methods.
Such direct estimation methods are very general, but may suffer
from large variance of the gradient estimates and therefore slow
learning.

Actor-critic methods tackle this problem by using a value
function (the critic) to compute the gradient of the policy (the
actor). The fundamental connection between these two quanti-
ties is given by the policy gradient theorem, discovered simul-
taneously by Sutton et al. (2000) and by Konda and Tsitsik-
lis (2003). When applied in the approximate case, this the-
orem requires that the Q-function is represented using a so-
called compatible approximator, which is linear and uses the
BFs φ(x, u) = ∇ log π̂(x, u; w):

Q̂(x, u; θ) = [∇ log π̂(x, u; w)]>θ

Then, the policy gradient theorem states that:

∇J(w) =

∫
X

dw(x)
∫

U
∇π̂(x, u; w)Q̂(x, u; θ)dudx (20)

assuming that θ has been found so that Q̂(x, u; θ) is a least-
squares approximation of the true Q-function of the policy
π̂(x, u; w) given by the current parameter w. Compatible ap-
proximation provides a major advantage: once a good policy
parametrization has been found (from prior knowledge or other-
wise), a Q-function parametrization automatically follows. In-
tuitively, (20) says that the least-squares projection of the Q-
function on the span of the compatible BFs provides sufficient
information to compute the gradient. To find θ, approximate
policy evaluation may be performed e.g. with the TD or LSTD
techniques above.

A few landmark references about actor-critic methods in-
clude Barto et al. (1983), where the actor-critic structure was
first defined; Peters and Schaal (2008) which popularized the
so-called natural actor critic; and Bhatnagar et al. (2009) where
an array of such algorithms with convergence proofs was given.
We outline here the particularly elegant method of Peters and
Schaal (2008). It relies on the natural gradient (Amari and
Douglas, 1998; Kakade, 2001), which rescales the gradient
∇J(w) by the inverse of the curvature, somewhat like New-
ton’s method for optimization but without assuming a locally
quadratic shape. The details are involved, but the final result is
that for a compatible Q-function approximator, the natural gra-
dient is equal the Q-function parameters θ, leading to the simple
update:

w`+1 = w` + α`θ`

4. Control-theoretic approaches and viewpoint

Control-theoretic approaches and techniques for approxi-
mately solving optimal control problems of the type (2)-(3)
are labeled Approximate or Adaptive Dynamic Programming
(ADP). Many of these approaches are model-free, in which case
they are classified as RL. However, not all ADP methods in-
volve learning or have a direct connection with RL.

Owing to the broadness of the terms ADP and RL, many au-
thors utilize them interchangeably, and ADP is sometimes also
used to denote AI approaches. To keep the terminology consis-
tent, in this survey we reserve the term ADP only for control-
theoretic approaches; and RL only for model-free methods –
regardless of whether they originate in AI or control.

In contrast to the other methods in this paper, control-
theoretic approaches often rely on state-dependent value func-
tions Vπ,V∗, so we will characterize them briefly here. The
Bellman equations for the policy and optimal value functions
are, respectively:

Vπ(x) = Ex′∼ f (x,π(x),·)
{
ρ(x, π(x), x′) + γVπ(x′)

}
(21)

V∗(x) = max
u

Ex′∼ f (x,u,·)
{
ρ(x, u, x′) + γV∗(x′)

}
(22)

Similarly to T [Q], we will also interpret the right-hand side of
(22) as a mapping applied to the value function, denoted T , so
that V∗ = T [V∗]. A temporal-difference error similar to the one
in square brackets in (14), but written in terms of value function
V , is:

rk+1 + γV(xk+1) − V(xk) (23)

In the remainder of this section, we first reflect on RL sta-
bility considerations (Section 4.1), and then in Section 4.2 we
present ADP based on Linear Programming (LP).

4.1. Stability considerations for reinforcement learning

As previously stated, (2)-(3) is an optimal control prob-
lem for sequential decision making under uncertainties (Pow-
ell, 2012; Russell and Norvig, 2016; Sutton and Barto, 2018;
Bertsekas, 2017; Borrelli et al., 2017). Optimal control meth-
ods typically seek control laws in an offline manner assuming
availability of the underlying dynamic models (Liberzon, 2011;
Borrelli et al., 2017). When the underlying models are unavail-
able or partially known, adaptive control approaches are em-
ployed in an online fashion (Landau et al., 2011). Thus, on-
line RL methods (e.g., Section 2.3) represent adaptive optimal
control methods in the sense that (sub)optimal control laws are
obtained online using real-time measurements without a model
(Lewis et al., 2012; Sutton and Barto, 2018).

Stability analyses of optimal and adaptive control methods
are crucial in safety-related and potentially hazardous applica-
tions such as human-robot interaction, autonomous robotics or
power plant control. In order to have tractable and conclusive
solutions, the control community often starts from determinis-
tic settings when devising optimal and adaptive control laws.
Subsequently, potential uncertainties, noise and disturbances,
which are not found in the deterministic setting, are handled
using various robustness tools (e.g., dissipativity, Lp-stability,

10

Input-to-State Stability, etc.) and simplifications (e.g., certainty
equivalence) in order to infer stability in an appropriate sense,
such as local, set, asymptotic, exponential or semi-global sta-
bility, as well as uniform ultimate boundedness (Zhang et al.,
2011; Lewis et al., 2012; Yang et al., 2014; Görges, 2017; Pos-
toyan et al., 2017).

Unlike the standard control approaches (Liberzon, 2011;
Landau et al., 2011; Borrelli et al., 2017), which are designed
around stability from the start, RL approaches necessitate fur-
ther stability, feasibility and robustness guarantees (Lewis et al.,
2012; Görges, 2017). It is worth pointing out that here we are
interested in stability from the control viewpoint, i.e., stability
of the closed-loop system resulting from using the (e.g. online
learning) controller. This should not be confused with another
notion of stability often used in AI, which refers to conver-
gence of learning algorithms (to the asymptotic behavior from
the control viewpoint). We always use in this review the word
“convergence” for the latter notion.

This highlights a fundamental philosophical difference be-
tween the AI and control communities. AI researchers focus
on performance in terms of cumulative rewards, where the re-
wards can have any meaning and are seen as a given part of the
problem. Algorithmically, this means that only the convergence
(qualitative/asymptotic, or quantitative via convergence rates)
of the learning process to a near-optimal solution is considered,
whilst overshoot bounds along the learning process (that is, the
so-called δ-ε arguments), which are needed for closed-loop sta-
bility, are put aside. This is sometimes possible due to innocu-
ous nature of some AI applications (e.g., mastering video or
board games), while for physical systems such as robots sta-
bility is resolved heuristically. Conversely, the objectives of
control researchers revolve around stability, so that even when
optimal control is used, the major – and often, the only – role
of the rewards (equivalently, negative costs) is to represent sta-
bility requirements, such as in standard approaches to Model
Predictive Control (MPC). There exist of course exceptions –
for instance, economic MPC methods (Diehl et al., 2011) rein-
troduce “true” optimization objectives in MPC.

This basic difference leads to other, subtler variations be-
tween the fields. For example, in AI rewards are often assumed
to be bounded from the outset, whereas in control they are not
because if the state unstably grows arbitrarily large this should
be reflected by arbitrary (negative) reward magnitudes. Simi-
larly, a discount factor is not typically used in control because
the value function is no longer a Lyapunov function, so that
optimal solutions of (2)-(3) might not be stable at all (Pos-
toyan et al., 2017). Furthermore, since without some knowl-
edge about the system it is impossible to provide an (at least
initial) stabilizing controller, control approaches typically as-
sume some model knowledge for control design and then add
uncertainty on top of this basic model, as explained earlier. On
the other hand, AI usually takes the view that nothing at all is
known about the dynamics, which – in addition to making sta-
bility guarantees very difficult – also leads to a tendency in AI
to ignore any existing knowledge about the model, much to the
puzzlement of the control engineer. We provide in Section 6
some ideas on how these two different overall views might be

reconciled.
Next, to help ground things for the control engineer, let us no-

tice that closed-form solutions of (2)-(3) are available in some
specific cases: Linear Quadratic Regulation (LQR) problems,
which were presented in Section 2.1, Linear Quadratic Gaus-
sian (LQG) problems (Bertsekas, 2017; Powell, 2012; Lewis
et al., 2012; Modares et al., 2015; Sutton and Barto, 2018),
and H∞-control. Even though the H∞, LQR and LQG (itera-
tive) solutions are not originally derived using the RL frame-
work, these solutions (e.g., the value-function-based Hewer’s
and Lyapunov recursion algorithms) are readily derived using
the RL approaches presented in previous sections as shown by
Bertsekas (2017); Powell (2012); Lewis et al. (2012); Sutton
and Barto (2018).

We delve deeper into the standard LQR problem. When γ =

1, the following Hamiltonian function (Lewis et al., 2012):

H(xk, uk) =x>k Qxk + u>k Ruk + (Axk + Buk)>P(Axk + Buk)
− x>k Pxk,

where P is the Riccati solution, is in fact a temporal differ-
ence error (23). This is because x>k Qxk + u>k Ruk = rk+1,
(Axk + Buk)>P(Axk + Buk) = V∗(xk+1), and x>k Pxk = V∗(xk).
A necessary condition for optimality ∂H(xk, uk)/∂uk = 0 yields
the stabilizing and optimal control law:

uk = π∗(xk) = −(B>PB + R)−1B>PAxk = Lxk, (24)

which is the undiscounted version of (10). Next, since it also
holds that:

V∗(xk) =

∞∑
i=k

ri+1 = x>k Qxk + u>k Ruk + V∗(xk+1),

we have that:

x>k Pxk = x>k Qxk + x>k LRL>xk + x>k (A + BL)>P(A + BL)xk

yielding:

P = Q + LRL> + (A + BL)>P(A + BL),

= A>[P − PB(R + B>PB)−1B>P]A + Q

which is the undiscounted version of the Riccati equation (9).
To apply RL, we will use Q-functions. In the LQR case, the

optimal Q-function is:

Q∗(xk, uk) = x>k Qxk + u>k Ruk + (Axk + Buk)>P(Axk + Buk)

This can be rewritten in the following quadratic form (Lewis
and Vrabie, 2009):

Q∗(xk, uk) =
1
2

[
xk

uk

]> [
A>PA + Q B>PA

A>PB B>PB + R

]
︸ ︷︷ ︸

=:

Qxx Qxu

Qux Quu

[
xk

uk

]
(25)

By solving then ∂Q∗(xk, uk)/∂uk = 0, we get:

uk = Q−1
uu Quxxk, (26)

11

which is in fact (24). Nevertheless, although both (24) and (26)
render the optimal control law, these two expressions are con-
ceptually different. If the system model (i.e., the matrices A and
B) is known, one can readily utilize (10). However, in RL the
model is unknown, in which case (26) has a crucial advantage:
it can be learned from data. This is done by learning the matrix
of Q-function parameters in the form (25), which renders the
optimal LQR control law uk via (26). In other words, RL pro-
vides means to solve the algebraic Riccati equation (9) without
knowing the model, possibly in an online manner using data
measured along the system trajectories. Note that exploration
is important in such a learning procedure; in control-theoretic
approaches, exploratory actions are often obtained by adding
so-called probing noise to the control signals – similarly to the
policy gradient methods of Section 3.4.

For deterministic control-affine plants:

xk+1 = f̄x(xk) + f̄u(xk)uk, (27)

similar conclusions can be obtained even without the knowl-
edge of f̄x and f̄u, as demonstrated by Zhang et al. (2011); Lewis
et al. (2012); Yang et al. (2014).

This line of deriving algorithms leads to the ADP field, which
has stability as its primary focus, and most of the papers cited
above are from ADP. However, the stability guarantees for H∞,
LQR and LQG are not given in the realm of RL, but by re-
ferring to the original (model-based) works. These works typ-
ically consider offline algorithms with perfect model knowl-
edge and state information so that closed-loop stability dur-
ing learning is not a relevant concern. Somewhat reversed ap-
proaches, in which the authors start off with robust stability
(e.g., Lp-stability) and employ RL towards (sub)optimality, are
also of interest (Kretchmar et al., 2001; Anderson et al., 2007;
Friedrich and Buss, 2017; Tolić and Palunko, 2017). Such ap-
proaches follow the control philosophy of trading off optimality
for stability.

A general framework for investigating stability of
(sub)optimal control laws for deterministic discounted
problems was given by Postoyan et al. (2017). Even though
Postoyan et al. (2017) do not deal with solving (2)-(3), which
is the focus of this paper, they elucidate connections between
control-theoretic and AI approaches towards solving the
deterministic version of (2)-(3). The main insight is that
discounting, which is preferred in AI because it leads to nice
fixed-point properties and algorithm convergence, can lead to
instability unless care is taken to select γ sufficiently close to 1.
Note that the default choice in control is γ = 1, as we selected
it in the equations above, but this can lead to unboundedness
of solutions unless stability is addressed (which is typically
not done in AI works). Postoyan et al. (2017) also highlight
novel connections between MPC (Grimm et al., 2005; Grüne
and Pannek, 2016; Borrelli et al., 2017) and RL. For further
comparisons among MPC and RL, refer to (Bertsekas, 2005;
Ernst et al., 2009; Beuchat et al., 2016; Görges, 2017) and
references therein. Accordingly, MPC is model-based, not
adaptive, with high online complexity, but with a mature
stability, feasibility and robustness theory as well as inherent

constraint handling. On the other hand, RL is model-free,
adaptive, with low online complexity, but with immature
stability, feasibility and robustness theory as well as difficult
constraint handling. It appears that the synergy of MPC and
RL is a promising research avenue for handling (2)-(3) with
stability guarantees.

Lastly, because guaranteeing stability of RL is a formidable
challenge, many existing results suffer from a number of short-
comings. Most algorithms for nonlinear systems rely on func-
tion approximation for the reasons explained in Section 3, and
a rationale behind employing approximate architectures is the
fact that basis functions can (uniformly) approximate any con-
tinuous functions with arbitrary precision on compact sets.
However, what if the underlying optimal value function (i.e., Q-
or V-function) is not continuous? Can this discontinuity be de-
termined a priori for some problems so that the approximation
architecture and stability analyses can be modified accordingly?
In addition, during the learning process, how can one guaran-
tee that this compact set will not be left, especially in stochastic
settings? Notice that the approximation error outside the com-
pact set may not be upper bounded. Which initial conditions
yield trajectories within the compact set of interest? Further-
more, while convergence results resolve stability issues for of-
fline learning to some extent (since RL does not run in closed
loop with the system), how to ensure that all iterations yield
stable control laws during online RL, especially in stochastic
environments? Even for deterministic problems, some of these
questions are still not fully addressed (Lewis et al., 2012). All
the above approximation and stability considerations are even
more difficult when considering continuous-time dynamics and
rewards as exemplified by integral RL (Lewis et al., 2012) and
related approaches (Jiang and Jiang, 2012).

4.2. Linear programming approaches

Not all ADP approaches for solving (2)-(3) have the RL fla-
vor. The works of de Farias and Roy (2003); Wang et al. (2014);
Beuchat et al. (2016) devise LP approaches to ADP by for-
mulating linear optimization problems whose solution corre-
sponds to the solution of the optimal control problem (2)-(3)
for γ ∈ (0, 1). The rationale is that LP is a fast, effective and
well-understood optimization tool.

Although LP approaches have different viewpoints and
strategies, they are built upon the following two properties:

• monotonicity: for functions V,V ′ : X → R the following
holds

V(x) ≤ V ′(x),∀x ∈ X =⇒ T [V] ≤ T [V ′], (28)

where function inequalities are interpreted pointwise, and

• value iteration convergence: similarly to the Q-function
case discussed in Section 2, for any bounded initial value
function V0 : X → R and any x ∈ X, since γ < 1, the
following holds

V∗(x) = lim
k→∞
T k[V0](x), (29)

12

Now, an LP counterpart of (2)-(3) is:

maximize Ex0∼d0(·)V̂(x)

subject to V̂ ≤ T [V̂], (30)

where V̂(x) =
∑p

i=1 φi(x)θi is an underestimator of the fixed
point V∗ (also, θi ∈ R, φi : X → R). Note that, just like in
most methods discussed herein, function approximation (in this
case with BFs) is employed.

In general, the constraint in (30) is known as the Bellman
inequality and represents a relaxation of the Bellman equation
(22). The Bellman inequality is not linear in V̂ owing to the
max operator in (22). Therefore, LP approaches seek linear
conditions/constraints that imply V̂ ≤ T [V̂]. For instance, (30)
is a linear program in the case of finite state and input spaces
(de Farias and Roy, 2003). In addition, V̂ ≤ T [V̂] in (30) is
often replaced with the iterated Bellman inequalities, that is,
V̂ ≤ T K[V̂], K > 1, K ∈ N, in an effort to obtain less con-
servative estimates of V∗. As in the case of the Bellman in-
equality, the iterated Bellman inequality is often replaced by
conditions/constraints that imply it. Similar lines of reasoning
apply when Q-functions, rather than V-functions, are of interest
as exemplified by Beuchat et al. (2016).

Performance bounds similar in spirit to those presented in
the earlier sections are obtained for LP approaches as well. In
addition, online variants of (30) are devised by de Farias and
Roy (2003); Wang et al. (2014); Beuchat et al. (2016).

5. Deep reinforcement learning

Next, we shift our focus closer to AI in order to discuss a
new subfield of RL that is extremely promising and has conse-
quently seen a surge of research effort in recent years. This field
is Deep Reinforcement Learning (DRL), and can be understood
as a particularly powerful way to solve function approximation
in RL, as introduced in Section 3.1.

There are many different function approximators to choose
from, and all make some assumptions about the functions that
need to be approximated. Neural Networks (NNs) make only
smoothness assumptions and, as a consequence, are able to rep-
resent any smooth function arbitrarily well given enough pa-
rameters (Hornik, 1991), making them a very general approx-
imator option. However, without assumptions in addition to
smoothness, it is impossible to learn to approximate certain
complex functions in a statistically efficient manner (Bengio
et al., 2006). The most important additional assumption made
in Deep Neural Networks (DNNs) is that the function that needs
to be approximated can be composed of a hierarchy of sim-
pler functions (Goodfellow et al., 2016). This assumption is
expressed through the architecture of DNNs, which have multi-
ple hidden layers that compute nonlinear transformations of the
outputs of previous layers. This decomposability assumption
has proven very useful, especially when learning functions of
natural data such as images, sounds and languages.

The combination of these DNN function approximators with
RL into DRL is tempting, especially for domains such as
robotics where it can enable learning behaviors directly from

raw sensory signals through trial and error. DRL has already
shown impressive results such as achieving super-human per-
formance on the game of Go, which until recently was believed
to require human intuition (Silver et al., 2016). It is however
important to realize that the assumptions behind DNNs do not
always hold and that they do come at a price. We outline the as-
sumptions, the opportunities they offer and the potential pitfalls
of combining DNNs with RL in Section 5.1. In Section 5.2, we
describe common general strategies to deal with the challenges
of DRL, while Section 5.3 gives an overview of popular DRL
algorithms and how they implement the solutions. Section 5.4
describes ways in which the opportunities provided by the DNN
assumptions can be exploited further.

5.1. Opportunities and pitfalls

In order to decide whether using a DNN as a function approx-
imator is a good idea, and to realize the potential when one is
used, it is important to be aware of the consequences stemming
from the assumptions underlying deep learning.

Universal function approximation
The use of a universal function approximator, which can ap-

proximate any smooth function arbitrarily well, makes it pos-
sible to learn complex nonlinear policies and value functions.
Theoretically, the combination of RL with DNNs gives a very
general algorithm. However, this does mean that the space of
possible functions is very large, making the optimization prob-
lem of finding a good set of parameters difficult. When more
is known about the properties of the function that needs to be
approximated, including this knowledge and thereby reducing
the search space can be very beneficial. Although additional as-
sumptions might introduce bias in the learned function, it might
also make the problem of learning the function tractable. Addi-
tionally, the use of a universal function approximator makes it
more likely to over-fit to the training data. Rajeswaran et al.
(2017) showed how, on a set of benchmarks often used to
test DRL algorithms, RL with simpler function approximators
learned faster and resulted in more robust policies, as the neural
network policies over-fitted on the initial state distribution and
did not work well when initialized from different states.

Stochastic gradient descent
While several optimization techniques could be used to fit the

parameters of a neural network (e.g. neuroevolution, Koutnı́k
et al., 2013), the large number of parameters in most neural
networks mean that first-order gradient methods are by far the
most popular choice in practice. These techniques calculate an
estimate of the first-order gradient of the cost function with re-
spect to all of the network parameters. In the simplest case,
the parameters are simply adjusted slightly in the (opposite) di-
rection of the gradient, although often techniques are used that
incorporate momentum and adaptive learning rates per param-
eter such as rmsprop (Tieleman and Hinton, 2012) and adam
(Kingma and Ba, 2014).

Neural networks can learn in a statistically efficient way be-
cause their parameters can apply globally and the decomposi-

13

tion into functions of functions allows the efficient reuse of pa-
rameters. While this allows for the generalization of a policy
to unexplored parts of the state-space, it also means that the
gradient estimates should be representative of the entire state-
action space and not biased towards any particular part of it.
Therefore, gradient estimates are usually averaged over indi-
vidual gradients computed for a batch of experiences spread out
over the state-space. Subsequent gradient estimates should sim-
ilarly be unbiased; they should be independent and identically
distributed (i.i.d.) over the relevant state-action space distribu-
tion. When the gradient estimates suffer from high variance (as
is the case for Monte-Carlo estimates of the policy gradient, see
again Section 3.4), they should be averaged over a larger batch
to get a more reliable estimate.

Functions of functions
The assumption that the function that needs to be approx-

imated is composed of a hierarchy of simpler functions is en-
coded in DNNs by having multiple layers, with each layer com-
puting a function of the outputs of the previous layer. The num-
ber of unique functions that the entire network can represent
scales exponentially with the number of layers (Raghu et al.,
2016) and the optimization of deeper networks has theoretically
been shown to be less likely to result in a poor local optimum
(Choromanska et al., 2015).

When determining the gradient of the loss function with re-
spect to the parameters, the repeated multiplications with the
derivative of a layer with respect to its inputs, resulting from
the chain rule, can cause the gradients to become too large
or small to effectively learn from. This problem is especially
pronounced in recurrent neural networks, which are effectively
very deep in time and repeatedly apply the same function
(Hochreiter et al., 2001).

Complexity
On domains where the underlying assumptions are valid,

DNNs have shown remarkable results in practice. The theoreti-
cal foundations are however still somewhat incomplete (Zhang
et al., 2016). DRL lacks the theoretical guarantees offered by
RL with some other types of function approximators. At the
same time, it has been shown to scale to problems where the
alternatives are intractable.

The complexity of the interplay of the different components
of DRL algorithms makes the learning curve fairly steep for
beginning practitioners. Implementation details not mentioned
in papers can have a more significant influence on the perfor-
mance of a method than the parameters that are the focus of the
work (Henderson et al., 2017; Tucker et al., 2018). The com-
plexity of the domains DRL is often tested on also contributes
to a relatively high computational complexity. This means that
DRL papers often include fewer repetitions of the experiments
than are needed to get statistically significant results (Hender-
son et al., 2017).

5.2. Common solution components
A substantial number of DRL algorithms have been proposed

recently. These algorithms all have to address the problems

outlined in the previous section. To do this, most methods are
based on a few shared ideas. While most of these ideas and the
problems they address are not limited to RL with DNNs as func-
tion approximators, they have proven crucial for getting DRL to
work well. This section discusses these common ideas, while
the algorithms themselves are discussed in the next section.

Delayed targets
When DRL algorithms use bootstrapping to learn a value

function, the learning is posed as a supervised learning prob-
lem. For the states and actions in the batch, the targets are the
bootstrapped value estimates and the networks are trained by
minimizing the difference between the network’s predictions
and these bootstrapped value estimates. These value targets
are problematic for convergence since they are highly corre-
lated with the network predictions. This direct feedback loop
can cause the learning process to diverge (Mnih et al., 2015).
To ameliorate this problem, the target values can be calculated
using an older version of the (action) value function network,
often called target network.

Trust region updates
The strongly nonlinear nature of neural networks can mean

that a step in parameter space can have an unexpected effect on
the behavior of the function. Although small learning rates can
help, the resulting increase in training time and required amount
of training samples mean that preventing problems in this man-
ner is often infeasible in practice. The problems are especially
pronounced for policy gradient strategies based on roll-outs,
where the gradients additionally exhibit high variance. Changes
to the policy can quickly change the distribution of states vis-
ited by the updated policy away from the on-policy distribution
for which the update was valid.

To improve the likelihood of the updates to the policy result-
ing in increased performance, the changes in the policy distri-
bution should therefore be kept small. Several schemes have
been proposed to prevent the changes to the parameters of the
policy from resulting in too large changes to the policy distribu-
tion. These include adding a constraint on the policy distribu-
tion change to the optimization (Schulman et al., 2015a), clip-
ping the objective function such that only small changes to the
policy distribution are considered beneficial (Schulman et al.,
2017), and constraining the policy parameters to be close to the
running average of previous policies (Wang et al., 2016).

n-step returns
A problem that is inherent to bootstrapping methods is that

they result in biased updates since the targets are based largely
on an approximation of a function that should still be learned
and is therefore by definition incorrect. This bias can prevent
value function based methods from converging. On the other
hand, Monte-Carlo based methods, although unbiased, result in
high variance. This is because the return calculated for each
roll-out trajectory represents only a single sample from the re-
turn distribution, while value functions represent the expecta-
tion of the return distribution.

14

On the complex domains that DRL is often applied to, the
high variance of Monte-Carlo based methods tends to result in
learning that is infeasibly slow. At the same time, the bias of
methods based exclusively on learning value functions through
bootstrapping results in learning that can be faster at times,
while failing to learn anything useful altogether other times. A
common strategy therefore is to interpolate between these ex-
tremes, for instance by using n-step algorithms (Watkins, 1989).
To estimate the return from a certain state, these algorithms use
the true rewards observed during n time-steps and the learned
value estimate for the state in time step n + 1. For instance, in
n-step SARSA, the action value target becomes:

q(xk, uk) = rk+1 + γrk+2 + · · · + γn−1rk+n + γnQ̂(xk+n+1, uk+n+1)
(31)

For n = 1, the standard (1-step) SARSA target is recovered,
while for n → ∞, (31) becomes a Monte-Carlo estimate of the
return. Note that n-step returns are an alternative way to achieve
a similar effect to the eligibility traces discussed in Section 2.3.
In fact, using eligibility traces leads to a combination of n-step
returns for all values of n, exponentially weighted by λn−1 (Sut-
ton and Barto, 2018). The n-step return is preferred in DRL
because it tends to be easier to use with momentum based opti-
mization and recurrent neural networks (Mnih et al., 2016).

Just like the use of target networks, the use of n-step return
targets reduces the correlations between the value function that
is being learned and the optimization targets. Whereas the use
of targets networks slows down the learning process in order to
attain the convergence gains, the use of n-step returns can speed
up learning when the roll-outs are close to on-policy.

Experience replay
One of the largest mismatches between the RL framework

and the stochastic gradient descent optimization algorithms
used to train DNNs is the requirement of the latter for i.i.d.
estimates of the gradients. This requirement can be satisfied
by using an experience replay buffer. The consecutive, strongly
correlated experiences obtained through interaction with the en-
vironment are saved into the buffer. When batches of experi-
ences are needed to estimate the gradients, these batches are
assembled by sampling from the buffer in a randomized order,
breaking their temporal correlations. The fact that off-policy al-
gorithms can learn about the optimal policy from data obtained
by another policy means that a fairly large amount of previous
experiences can be retained. This in turn means that even if
the policy changes suddenly, the data distribution used to cal-
culate the gradients changes only slowly, which aids with the
convergence of the optimization process. Finally, the fact that
old experiences can be reused aids the sample efficiency of al-
gorithms using an experience replay buffer. Extensions have
also been proposed, with the most popular being to replace uni-
form sampling from the buffer with sampling based on a distri-
bution determined by the temporal difference error associated
with the experiences (Schaul et al., 2016). By sampling surpris-
ing experiences more often, the learning process can be sped up
significantly. This is similar to the classical idea of prioritized
sweeping (Moore and Atkeson, 1993).

When using n-step returns with n > 1, it is necessary to com-
pensate for the fact that the samples are not from the policy for
which we want to estimate the return. Importance sampling is
a popular choice that prevents bias (Precup et al., 2000). The
downside of importance sampling is that when the difference
between the policies is large, the importance weights quickly
become either very small, effectively rendering the sampled
experiences useless, or very large, resulting in updates with
very high variance. Other compensation strategies that address
these issues have been proposed, see Munos et al. (2016) for an
overview.

When an on-policy learning algorithm is used, a buffer can
be filled with experiences from roll-outs with the policy. Af-
ter a learning update based on these experiences, the buffer is
emptied and the process is repeated.

Input, activation and output normalization
The nonlinearities used in neural networks bound the outputs

of the neurons to a certain range. For instance, the popular
Rectified Linear Unit (ReLU) maps all non-positive inputs to
zero. As a consequence, when calculating the derivatives of
these nonlinearities with respect to their inputs, this derivative
can be very small when the input is outside of a certain range.
For the ReLU, the derivative of the activation with respect to
all parameters that led to the activation is zero when the input
to the ReLU was non-positive. As a consequence, none of the
parameters that led to the activation will be updated, regardless
of how wrong the activation was. It is therefore important that
the inputs to all neural network layers (whether they be the input
to the network or the ouputs of previous layers) are within a
sensible range.

When the properties of the inputs are unknown a priori and
they cannot be normalized manually, adaptive normalization
can be used. These techniques can also be used on subsequent
layers. Normalization techniques include batch normalization
(Ioffe and Szegedy, 2015), layer normalization (Ba et al., 2016)
and weight normalization (Salimans and Kingma, 2016).

Similar considerations apply to the backward pass through a
network during training. The gradients of the loss with respect
to the parameters should not be too large, as an update based on
large gradients can quickly cause the subsequent activations of
the unit with the updated parameters to be outside of this range
for which learning works well. Particularly, this means that
while the scale of the reward function does not influence most
forms of RL, DRL algorithms can be sensitive to this property
(Henderson et al., 2017).

To ensure that the parameter gradients are within a sensible
range, these gradients are often clipped. This changes the opti-
mization objective but prevents destructive updates. Addition-
ally, when learning value functions, the reward function can
be scaled such that the resulting value function is of a sensi-
ble order of magnitude. Rewards are also sometimes clipped,
although this changes the problem definition. Finally, the tar-
get values can be adaptively normalized during learning (van
Hasselt et al., 2016a).

15

Table 1: Deep reinforcement learning algorithms reviewed. Return estimation refers to the targets for value functions and / or the return estimation in the policy
gradient. Update constraints refer to both constraints on bootstrapping as well ass updates to the policy.

Algorithm Policy Return estimation Update constraints Data distribution
NFQ discrete3, deterministic 1-step Q bootstrap with old θ off-policy fixed apriori
(D)DQN discrete, deterministic 1-step Q bootstrap with old θ off-policy experience replay
DDPG continuous, deterministic 1-step Q bootstrap with old θ,w off-policy experience replay
TRPO discrete / continuous stochastic ∞-step Q policy constraint on-policy
PPO discrete / continuous stochastic n-step advantage (GAE) clipped objective on-policy
A3C discrete / continuous stochastic n-step advantage - on-policy
ACER discrete / continuous stochastic n-step advantage average policy network on-policy + off-policy

5.3. Popular DRL algorithms

In this section we will discuss some of the more popular or
historically relevant algorithms for deep reinforcement learn-
ing. These algorithms all address the challenges of perform-
ing RL with (deep) neural network function approximation by
combining implementations of some of the ideas outlined in the
previous section. Table 1 gives a comparison of some popular
or historically relevant DRL algorithms.

Neural Fitted Q iteration (NFQ)
An important early development in achieving convergent

RL with neural network function approximation was the
Neural Fitted Q iteration (NFQ) algorithm (Riedmiller, 2005),
a variant of fitted-Q iteration (Algorithm 6). The algorithm
uses a fixed experience buffer of previously obtained interac-
tion samples from which to sample randomly. By calculating
the target Q-values for all states at the start of each optimiza-
tion iteration, the optimization is further helped to converge. A
final measure to aid convergence was to add artificial experi-
ence samples to the database at the goal states, where the true
Q-values were known.

Deep Q-network (DQN)
While good for convergence, the need for an a-priori fixed

set of experiences is limiting. While new experiences can
be added to the NFQ buffer, Mnih et al. (2015) proposed to
continuously write experiences to an experience replay buffer
during training, and to sample experiences uniformly at ran-
dom from this buffer at regular environment interaction inter-
vals. Since the constant changes to the contents of the buffer
and the learned Q-function mean that good targets can not be
calculated a priori, a copy θ− of the Q-function parameters θ
is kept in memory. The optimization targets (Q-values) are
calculated using a target network, which is a copy of the Q-
function network using these older parameters θ−. At regular
intervals the target network parameters θ− are updated to be
equal to the current parameters θ. Mnih et al. (2015) demon-
strated their method using raw images as inputs. Their con-
volutional Deep Q-Network (DQN) achieved super-human per-
formance on a number of Atari games, resulting in growing in-
terest in the field of DRL.

3A different version of NFC for continuous actions (NFQ-CA) does exist
(Hafner and Riedmiller, 2011).

The base DQN algorithm is simple to implement. Through
various extensions, DQN can achieve competitive performance
on domains with discrete actions (Hessel et al., 2017).

Double DQN (DDQN)
Although value function based methods are inherently bi-

ased, DQN suffers from a particular source of bias that can be
reduced fairly easily. This form of bias is the overestimation
of the returns which results from the maximization over the
Q-values (7). The max operator uses the same values to both
select and evaluate the Q-values, which makes over-estimation
of the values likely (van Hasselt et al., 2016b). To address this
problem, the selection and evaluation can be decoupled. The
original double Q-learning algorithm did this by learning two
separate Q-functions, based on separate experiences (van Has-
selt, 2010). One of these Q-functions is then used for the action
selection while the other is used to determine the Q-value for
that action. The Double Deep Q Network (DDQN) algorithm
(van Hasselt et al., 2016b) uses the two separate networks that
are already used in DQN for the separation such that the com-
plexity of the algorithm is not increased. As in DQN, the target
network is used to determine the value of the Q-function used
for bootstrapping, while the on-line network is used to deter-
mine for which action the target Q-function is evaluated. This
makes the optimization targets:

q(x, u) = r + γQ̂
(
x′, arg max

u′
Q̂(x′, u′; θ); θ−

)
.

This simple change was shown to improve the convergence and
performance of the DQN algorithm.

Deep Deterministic Policy Gradient (DDPG)
For continuous action spaces, an actor-critic al-

gorithm exists that is closely related to DQN. This
Deep Deterministic Policy Gradient (DDPG) algorithm
(Lillicrap et al., 2015) uses a deterministic policy u = π̂(x; w).
For convergence, target network copies of both the actor and
the critic are used for the critic’s optimization targets:

q(x, u) = r + γQ̂
(
x′, π̂(x′; w−); θ−

)
.

In this algorithm the target network parameters θ−,w− slowly
track the online parameters θ,w using a low pass filter. They
are updated after each optimization step according to:

θ− ← (1 − τ)θ− + τθ

w− ← (1 − τ)w− + τw,

16

with τ � 1. To calculate the gradients for updating the pol-
icy parameters, the algorithm uses samples of the deterministic
policy gradient (Silver et al., 2014):

∇wJ ≈
1
B

∑
b

∇aQ̂(x, u; θ)|x=xb,u=π̂(xb;w)∇wπ̂(x; w)|x=xb , (32)

with b the index in the mini-batch of size B containing experi-
ences sampled uniformly at random from the experience buffer
S. The DDPG method additionally uses batch normalization
layers (Ioffe and Szegedy, 2015).

DDPG is one of the simpler DRL algorithms allowing for
continuous action spaces. Since the algorithm is off-policy, it
additionally allows for experience replay, which together with
the use of bootstrapping can lead to sample efficient learning.
However, its off-policy nature makes DDPG most suitable for
domains with stable dynamics (Henderson et al., 2017). Ad-
ditionally, the bias in the policy gradient due to the exclusive
reliance on a learned value function can limit the performance
and convergence of the algorithm.

Trust Region Policy Optimization (TRPO)
While DDPG uses an off-policy critic to determine

the policy gradient for a deterministic policy, Schul-
man et al. (2015a) introduced a policy gradient method
on the other end of the bias-variance spectrum. Their
Trust Region Policy Optimization (TRPO) algorithm uses a
large number of roll-outs with the current policy to obtain
state action pairs with Monte Carlo estimates of their returns
Q̂wold (x, u). The stochastic policy is then updated by optimizing
for the conservative policy optimization objective (Kakade and
Langford, 2002), while constraining the difference between the
policy distribution after the optimization and the older policy
distribution used to obtain the samples:

max
w

E
{ ˆ̃π(x, u; w)

ˆ̃π(x, u; wold)
Q̂wold (x, u)

}
(33)

subject to E
{
DKL(ˆ̃π(x, ·; wold) || ˆ̃π(x, ·; w))

}
≤ c (34)

where DKL denotes the Kullback-Leibler divergence, and the
expectations are with respect to the state distribution induced
by the old policy. To perform the optimization, a linear approx-
imation is made to the objective and a quadratic approximation
is made to the constraint. The conjugate gradient method is then
used followed by a line search to calculate the next parameter
values. The TRPO method is relatively complicated and sample
inefficient, but does provide relatively reliable improvements to
the policy.

Generalized Advantage Estimation (GAE)
The stochastic policy gradient can be written as (Schulman

et al., 2015b):

∇wJ = E{
∞∑

k=0

Ψk ∇θ log π̃(xk, uk; w)}, (35)

where Ψk is an estimate of the return when taking action uk in
state xk and following the policy afterwards. A trade-off be-
tween the bias and variance of the policy gradient estimates
can be made by choosing how much Ψk is based on observed
rewards versus a learned value estimate, as discussed in Sec-
tion 5.2. Additionally, the variance of the policy gradient can
be reduced by subtracting a baseline from the return estimate
(Greensmith et al., 2004). A common and close to optimal
choice for the baseline is the state-value function. This makes
Ψ the advantage function:

A(x, u) = Q(x, u) − V(x),

which represents the advantage of taking action u in state x as
opposed to the policy action π(x). An n-step estimate of the
advantage function is:

Â(n)(xk, uk) =

n∑
i=1

γi−1rk+i + γnV̂(xk+n+1; θ) − V̂(xk; θ) (36)

To trade off the bias introduced by the imperfect learned
value function for low n with the variance of estima-
tors with high n, Schulman et al. (2015b) define a
Generalized Advantage Estimator (GAE) as an exponentially
weighted average of n-step advantage estimators:

ÂGAE(λ) B (1 − λ)
N∑

n=1

(λn−1Â(n)) (37)

The authors use the estimator with the TRPO algorithm. The
value function is learned from Monte-Carlo estimations with
trust region updates as well.

Proximal Policy Optimization (PPO)
The constrained optimization of TRPO makes the algorithm

relatively complicated and prevents using certain neural net-
work architectures. In the Proximal Policy Optimization (PPO)
algorithm, Schulman et al. (2017) therefore replace the hard
constraint by a clipped version of the objective function, which
ensures that for each state the potential gain from changing
the state distribution is limited, while the potential loss is not.
This allows optimizing the objective (which uses the GAE) with
SGD-based techniques, as well as adding additional terms to the
objective. Specifically, a regression loss for the value function
is added, which allows parameter sharing between the value
function and policy. Additionally, a loss based on the entropy
of the policy is added to encourage exploration (Williams and
Peng, 1991). PPO is a relatively simple algorithm that offers
competitive performance.

Asynchronous Advantage Actor Critic (A3C)
Instead of collecting a large number of consecutive on-policy

trajectories with a single policy, which are then batched to-
gether, Mnih et al. (2016) proposed the use of a number of
parallel actors with global shared parameters. These actors
all calculate updates with respect to the shared parameters,
which they apply to the parameters asynchronously (Recht

17

et al., 2011). To ensure the actors explore different parts
of the state-action space so that the parameter updates better
meet the i.i.d. assumption, each agent uses a different explo-
ration policy. While a number of proposed algorithms bene-
fited from the parallel actor setup, the most successful was the
Asynchronous Advantage Actor Critic (A3C) algorithm. This
algorithm takes a small number of steps, after which it calcu-
lates n-step advantage estimates (37) and value function esti-
mates for these roll-out steps. These are then used to calculate
gradients to update the policy (35) and the value function.

Actor Critic with Experience Replay (ACER)
The downside of the on-policy methods (TRPO, PPO, A3C)

is that once a step has been made in policy space, reevaluating
the policy gradient requires discarding all previous experiences
and running trials with the new policy. To increase the sample
efficiency, it is desirable to combine the good convergence of
the on-policy algorithms with the ability to reuse past experi-
ences of off-policy algorithms.

One algorithm that does this is the Actor Critic with Experi-
ence Replay (ACER) algorithm of Wang et al. (2016). It uses
the A3C algorithm as a base and combines it with a trust region
update scheme based on limiting the distance between the new
policy parameters and those of a running average of recent poli-
cies. It then alternates between the standard on-policy updates
of A3C and off-policy updates, where each parallel agent sam-
ples trajectories from a local experience buffer for the updates.
Truncated importance sampling with a bias correction term is
used to correct for the off-policy nature of the n-step trajecto-
ries. While the algorithm offers very competitive performance
for both discrete and continuous actions, it is relatively com-
plex.

Interpolated Policy Gradient (IPG)
Another way in which on- and off-policy algorithms can

be combined is to simply interpolate between the biased yet
sample efficient deterministic policy gradient obtained from
an off-policy critic (32) and the unbiased yet sample ineffi-
cient on-policy Monte Carlo estimate of the policy gradient.
This Interpolated Policy Gradient (IPG) method was proposed
by Gu et al. (2017), who found intermediate (but mostly on-
policy) ratios to work best.

5.4. Extensions

The DRL algorithms discussed in the previous section mostly
address the pitfalls of combining RL with DNNs. However, the
use of DNNs also offers opportunities to go beyond simply per-
forming RL with DNN function approximation. The functional
decomposition of DNNs means that while later layers might
compute very task specific features, earlier layers could repre-
sent much more general functions. For example, while later
layers in a convolutional network might learn to recognize task
specific objects, earlier layers might learn to detect edges or
textures (Olah et al., 2017). These earlier layers might therefore
easily generalize to new tasks and, equivalently, be trained from
data obtained from separate tasks. Therefore, the deep learning

assumptions make the combination of DRL with transfer learn-
ing and state representation learning very interesting.

State representation learning
In most of this survey, we have considered the standard RL

problem in which the agent has access to the state of the envi-
ronment x. In real control applications, especially in the domain
of robotics, the state of the environment is not directly accessi-
ble. Instead, only some indirect effects of the true environment
state might be observed by a set of sensors. Without resorting
to the POMDP formalism (discussed later), learning a policy in
this case can therefore be seen as a combination of learning a
representation of the state from the sensor data and learning a
policy based on the state representation. While the state rep-
resentation can be learned implicitly through DRL, the number
of required trial and error samples might be prohibitively ex-
pensive as the reward signal might contain only very indirect
information on how to learn the state-representation.

Instead, explicit State Representation Learning (SL) objec-
tives can be used before or during the RL phase. These objec-
tives can allow learning from unlabeled sensor data, as well
as limiting the parameter search space through the inclusion
of prior knowledge. Auto-encoding is a popular SRL objec-
tive as it is fully unsupervised; through a compression objective
salient details are extracted from observations that are highly re-
dundant (Hinton and Salakhutdinov, 2006; Lange et al., 2012;
Finn et al., 2016). Besides the knowledge that observations are
highly redundant, other priors include the fact that the state
of the world only changes slowly over time (Wiskott and Se-
jnowski, 2002), as well as the fact that the state should be pre-
dictive of immediate received rewards (Shelhamer et al., 2016).
Additional priors, relevant to physical domains, were suggested
by Jonschkowski and Brock (2015). Besides encoding general
knowledge about the state of the world, it is possible to learn
to encode the observations in a way that is suitable for control.
One example is the work of Watter et al. (2015), which em-
beds images into a state-space in which actions have a (locally)
linear effect. Another example is provided by Jonschkowski
et al. (2017) who learned to encode the positions and velocities
of relevant objects in an unsupervised manner. Jaderberg et al.
(2017) proposed to learn, off-policy, additional value functions
for optimizing pseudo rewards based on controlling the sensory
observations and the activations of the neurons of the networks.
The inclusion of SL in DRL can help learn representations and
policies that generalize to unseen parts of the state-space more
easily (de Bruin et al., 2018).

Transfer learning
Just as the generality of the functions encoded by the ear-

lier layers of the policy and value function DNNs means that
they can be trained with more than just RL updates, and gen-
eralize to unseen parts of the state-space, it also means that the
encoded functions can be relevant to more than just the train-
ing task. This makes DRL suitable for transfer learning, where
generalization needs to be performed to a new task, rather than
just across the state-space of the training task. In this context,
Parisotto et al. (2015) used DQN agents trained on several Atari

18

games as teachers for a separate DQN agent that was trained
to output similar actions, and have similar internal activations
as the teachers. This was found to result in a weight initial-
ization that sped up learning on new games significantly, given
enough similarity between the new games and some of the train-
ing games. It is also possible to more explicitly parameterize
representations for transfer. Universal Value Functions (UVFs)
(Schaul et al., 2015) are one example where value functions are
learned that generalize over both states and goal specifications.
To improve the performance in domains where only reaching a
goal results in obtaining a reward, Andrychowicz et al. (2017)
proposed Hindsight Experience Replay (HER), which relabels
a failed attempt to reach a certain goal as a successful attempt to
reach another goal. Another representation that is suitable for
transfer learning is the Successor Features (SF) representation
(Barreto et al., 2017) which is based on successor representa-
tions (Dayan, 1993). These representations decouple the value
function into a representation of the discounted state distribu-
tion induced by the policy and the rewards obtained in those
states. Zhang et al. (2017) showed the use of this representation
with DRL in the robotics domain.

Supervised policy representation learning
Sometimes the state of the environment is available for spe-

cific training cases, but not in general. For instance, a robot
might be placed in a motion capture arena. In this case, it might
be relatively simple to learn or calculate the correct actions for
the states in the arena. Alternatively, it might be possible to
solve the RL problem from specific initial states, but hard to
learn a general policy for all initial states. In both of these
scenarios, trajectories of observations and actions can be col-
lected and supervised learning can be used to train DNN poli-
cies that generalize to the larger state-space, preventing many
of the issues of DRL. One technique that applies this principle
is Guided Policy Search (GPS), which adds a constraint to the
local controllers on the deviation from the global policy, such
that the local policies do not give solutions that the DNN can
not learn to represent (Levine and Koltun, 2013; Levine et al.,
2016).

6. Outlook

We close our review with an outlook that starts by touching
on important areas of (or related to) RL that we could not cover
in our main survey. Then, we explain some ways in which prac-
tical problems may violate the standard MDP formulation of the
problem, and – where available – point out generalized meth-
ods that address this. Finally, we signal some important issues
that remain open for RL methods.

6.1. Research areas

There are entire fields of research that contribute ideas or al-
gorithms to RL, but that we were unable to cover in this re-
view. These fields include among others robotics (Deisenroth
et al., 2011; Kober et al., 2013), operations research (Powell,

2012), economics (Kamien and Schwartz, 2012), and neuro-
science (Sutton and Barto, 2018, Ch. 15). Within control, rel-
evant subfields include optimal control, adaptive control, and
model-predictive control, which we touched on briefly in Sec-
tion 4; in addition to other more specific areas like iterative
learning control (Moore, 2012) or extremum seeking (Ariyur
and Krstic, 2003). A specific area of AI research with deep con-
nections to RL and receding-horizon MPC is online or sample-
based planning, which at each step uses a model to simulate
and evaluate several candidate sequences of actions, or closed-
loop action selection rules in the stochastic case (Kocsis and
Szepesvári, 2006; Weinstein and Littman, 2012; Buşoniu et al.,
2012; Munos, 2014). Then, one of these solutions is selected,
its first step is applied, and the procedure is repeated in the next
state. These methods trade off a curse of dimensionality with
respect to the state and action size, with a “curse of horizon” –
they are generally exponentially complex in the horizon up to
which sequences are examined (Munos, 2014).

A crucial component of RL that we discussed only briefly is
exploration. Exploration methods can be grouped into undi-
rected and directed exploration (Thrun, 1992). While undi-
rected methods indiscriminately apply some noise to the action
selection, with the prototypical example being ε-greedy explo-
ration (12), directed exploration methods use knowledge of the
learning process to explore in a smarter manner. For example,
methods like Bayesian RL (Ghavamzadeh et al., 2015; Russell
and Norvig, 2016) and bandit theory (Auer et al., 2002) offer
principled ways of designing and analyzing exploration strate-
gies. Another benefit of Bayesian RL is the easier incorporation
of prior knowledge into the algorithms. Other directed explo-
ration methods include those that add to the original rewards an
extra exploration-inducing term, called intrinsic reward, when
visiting states that are deemed interesting (Barto, 2013). These
intrinsic rewards can for example be based on the (pseudo) state
visit count (Bellemare et al., 2016a), on the temporal differ-
ence error (Achiam and Sastry, 2017) or on the prediction ac-
curacy of a simultaneously learned dynamics model (Schmid-
huber, 1991). Note that these methods imply additional compu-
tational costs, which may be significant for some of them, like
Bayesian RL. In ADP approaches, exploration is often called
probing noise.

6.2. Generalizing the problem

The underlying models used by most of the RL algorithms
discussed above assume noise-free state information, whilst
many control processes possess output feedback buried in noise
and prone to delays (Jaakkola et al., 1995; Bertsekas, 2017;
Azizzadenesheli et al., 2016; Tolić et al., 2012; Bai et al.,
2012). This imperfect state information can be soundly handled
within the framework or Partially Observable Markov Decision
Processes (POMDPs) (Jaakkola et al., 1995; Azizzadenesheli
et al., 2016; Bai et al., 2012; Russell and Norvig, 2016) or –
when at least some model information is available – by using
state estimation (Bertsekas, 2017; Tolić et al., 2012; Tolić and
Palunko, 2017). However, solving POMDPs imposes signif-
icantly greater computational costs than MDP-based RL (Bai

19

et al., 2012). Like in RL, the exploitation-exploration issue can
be addressed using e.g. Bayesian RL ideas (Ross et al., 2011).

All models utilized in this paper are time-invariant (station-
ary using the AI vocabulary). Therefore, provided that the un-
derlying model changes “slowly enough”, all algorithms pre-
sented herein readily apply. However, the precise characteri-
zation of “slowly enough” intricately depends on the algorithm
learning rate and additional results are needed in this regard.
Despite our efforts, we were not able to find any work focusing
exclusively on this topic. General remarks and guidelines are
found in (Powell, 2012; Russell and Norvig, 2016; Bertsekas,
2017; Sutton and Barto, 2018). It is also of interest to investi-
gate models with delayed dynamics, which also appears to be
an uninvestigated problem in RL.

Another challenge with the standard MDP formulation arises
when the sampling frequency of the system to be controlled is
high. Higher frequencies mean that the effect of a single action
on the eventual return reduces. Using the difference in expected
returns for different actions to determine a policy therefore be-
comes problematic, especially when combined with function
approximation or when noise is present. From a control per-
spective however, a sufficiently high sampling frequency can
be crucial for the performance of the controller and for distur-
bance rejection (Franklin et al., 1998). While RL works of-
ten consider the sampling frequency to be a given property of
the problem, in reality it is an important meta-parameter that
needs to be selected. While more work is needed in this di-
rection, there are approaches that make RL more suitable for
higher sampling frequencies, or even continuous time. These
include the Semi-Markov Decision Process (SMDP) framework
(Bradtke and Duff, 1995), which adds the time it takes to tran-
sition between states to the MDP framework, as well as the
advantage learning algorithm (Baird, 1999) and the consistent
Bellman operator (Bellemare et al., 2016b) which both devalue
suboptimal actions in order to increase the difference between
the expected returns of the optimal and sub-optimal actions (the
action gap).

Multi-agent decentralized RL, in which the agents learn to
optimize a common performance index, is not yet fully solved
(Buşoniu et al., 2008; Lewis et al., 2012; Beuchat et al., 2016;
Russell and Norvig, 2016; Tolić and Palunko, 2017). When it
comes to adversarial agents, the game theoretic viewpoint is
needed (Lewis et al., 2012; Modares et al., 2015; Russell and
Norvig, 2016). From the stability and learning convergence
point of view, impediments of multi-agent games range from
the existence of multiple equilibria to non-stationary costs-to-
go owing to coupled problems.

6.3. Other open issues
An open issue that applies to AI and control equally is the de-

sign of the right function approximator for a specific problem.
Simpler architectures, like basis functions, suffer more from
this problem since they are less flexible; while more general ar-
chitectures like (deep) neural networks, kernel representations,
Gaussian processes, support vector regression, regression trees,
etc. have just a few meta-parameters to tune and are (at least
ideally) less sensitive to tuning. Nevertheless, using these more

complicated representations may not always be an option, due
e.g. to computational restrictions, or even fundamental ones –
many ADP methods with stability analysis only work for lin-
ear BF expansions, for instance. So the question of choosing
the right BFs is still a relevant one, see e.g. Munos and Moore
(2002); Grüne (2004); Bertsekas and Yu (2009).

A related issue is that, in general, RL can still only han-
dle small-to-medium scale problems, up to on the order of ten
variables. This limit is broken in certain cases where specific
assumptions may be made on the structure of the state sig-
nal – e.g. deep RL can handle image (or image-like) state sig-
nals with tens or hundreds of thousands of pixels. The scale
drops severely when more complicated flavors of problems, like
POMDPs, have to be solved. An alternative pathway to scala-
bility may be provided by hierarchical RL (Barto and Mahade-
van, 2003).

Control-related deficiencies of RL, some of which are dis-
cussed by Khargonekar and Dahleh (2018), include lack of
transparency and interpretability as well as vulnerability to ad-
versarial attacks and to rapid and unforeseen changes in the
environments. Regarding interpretability for instance, once
the learning process of a model-free algorithm is over, the Q-
function encodes (i.e., hides away) the underlying model. In
other words, neither the structure of the model (e.g., number
of the states, dominant dynamics/eigenvalues, etc.) nor its pa-
rameters are discovered. Moreover, it is not clear how to de-
tect when a model parameter changes slightly in such a way
that the underlying model becomes unstable. A novel learn-
ing algorithm with novel assumptions (e.g., novel admissible
policies) might be required. In addition, it is not clear how to
determine (and address) the case when exploration during the
learning process was not adequate and some important dynam-
ics were not learned.

In deep RL, recent public successes have led to a substantial
increase of interest in the field over the last few years. While
DRL is certainly very capable and can give very good results
when applied to the right problems, it is not the right tool for ev-
ery problem. In the context of control, more research is needed
into determining which kinds of problems benefit from using
DNNs as function approximators. This might have to be done
by getting a better understanding of how the representations are
learned for common network types and what types of functions
are represented and learned efficiently. A better understanding
of the representation of a learned policy might also help with the
interpretability issue, which is even more problematic for deep
representations than for classical ones, and can therefore lead to
a major bottleneck for using DRL in control. Additional gains
in the convergence properties and analysis of DRL algorithms
are also needed, as DRL methods are often quite sensitive to
their meta-parameters. Furthermore, the resulting controllers
lack any types of stability guarantees and have been shown to
over-fit to the training policy trajectories. Finally, continued
work on combining on and off-policy approaches will hope-
fully lead to algorithms that yield improved stability with better
sample efficiency.

Despite the fact that ADP approaches consider stability,
many challenges remain, so that general stable RL is unsolved

20

(Section 4). To address this, stability analysis should identify
the most general possible assumptions on the dynamics, and re-
quirements on the rewards, so that (near-)optimal solutions are
stabilizing. Within these (hopefully, not very tight) constraints
imposed by stability, AI should then take over and provide algo-
rithms that converge quickly to near-optimal solutions. These
algorithms should not be fully black-box, but should exploit
any model and stability knowledge provided by control theory.
How to do this is not yet known, especially when the dynamics
or exploration are stochastic, but we strongly believe that this
is a very promising area, and that good solutions can only arise
from a synergy of control-theoretic stability and AI optimality.

Acknowledgments

The work of L. Buşoniu is supported by a grant of
the Romanian National Authority for Scientific Research,
CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2016-
0670, grant agreement no. 9/2018. The work of D. Tolić and
I. Palunko is supported by Croatian Science Foundation under
the project IP-2016-06-2468 “ConDyS”. This work is addition-
ally part of the research programme Deep Learning for Robust
Robot Control (DL-Force) with project number 656.000.003,
which is (partly) financed by the Netherlands Organisation for
Scientific Research (NWO).

References

Achiam, J., Sastry, S., 2017. Surprise-based intrinsic motivation for deep rein-
forcement learning. arXiv preprint arXiv:1703.01732.

Amari, S., Douglas, S. C., 1998. Why Natural Gradient? In: Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing.
Seattle, USA, pp. 1213–1216.

Anderson, C. W., Young, P. M., Buehner, M. R., Knight, J. N., Bush, K. A.,
Hittle, D. C., July 2007. Robust reinforcement learning control using integral
quadratic constraints for recurrent neural networks. IEEE Transactions on
Neural Networks 18 (4), 993–1002.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P.,
McGrew, B., Tobin, J., Abbeel, O. P., Zaremba, W., 2017. Hindsight expe-
rience replay. In: Advances in Neural Information Processing Systems. pp.
5048–5058.

Ariyur, K. B., Krstic, M., 2003. Real-time optimization by extremum-seeking
control. John Wiley & Sons.

Arulkumaran, K., Deisenroth, M. P., Brundage, M., Bharath, A. A.,
2017. A brief survey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866.

Auer, P., Cesa-Bianchi, N., Fischer, P., 2002. Finite-time analysis of the multi-
armed bandit problem. Machine Learning 47 (2-3), 235–256.

Azizzadenesheli, K., Lazaric, A., Anandkumar, A., 2016. Reinforcement learn-
ing of POMDPs using spectral methods. In: COLT. Vol. 49 of JMLR Work-
shop and Conference Proceedings. JMLR.org, pp. 193–256.

Ba, J. L., Kiros, J. R., Hinton, G. E., 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Bai, H., Hsu, D., Kochenderfer, M. J., Lee, W. S., 2012. Unmanned aircraft
collision avoidance using continuous-state pomdps. Robotics: Science and
Systems VII 1, 1–8.

Baird, L. C., 1999. Reinforcement learning through gradient descent. Ph.D.
thesis, Carnegie Mellon University.

Barreto, A., Munos, R., Schaul, T., Silver, D., 2017. Successor features for
transfer in reinforcement learning. Neural Information Processing Systems
(NIPS).

Barto, A., Mahadevan, S., 2003. Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems: Theory and Applications 13 (4),
341–379.

Barto, A. G., 2013. Intrinsic motivation and reinforcement learning. In: In-
trinsically motivated learning in natural and artificial systems. Springer, pp.
17–47.

Barto, A. G., Sutton, R. S., Anderson, C. W., 1983. Neuronlike Adaptive Ele-
ments That Can Solve Difficult Learning Control Problems. IEEE Transac-
tions on Systems, Man, and Cybernetics 13 (5), 834–846.

Baxter, J., Bartlett, P. L., 2001. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research 15, 319–350.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.,
2016a. Unifying count-based exploration and intrinsic motivation. In: Ad-
vances in Neural Information Processing Systems (NIPS). pp. 1471–1479.

Bellemare, M. G., Ostrovski, G., Guez, A., Thomas, P. S., Munos, R., 2016b.
Increasing the action gap: New operators for reinforcement learning. In:
AAAI. pp. 1476–1483.

Bengio, Y., Delalleau, O., Roux, N. L., 2006. The curse of highly variable func-
tions for local kernel machines. In: Advances in neural information process-
ing systems. pp. 107–114.

Bertsekas, D. P., 2005. Dynamic programming and suboptimal control: A sur-
vey from ADP to MPC. European Journal of Control 11 (4), 310 – 334.

Bertsekas, D. P., 2012. Dynamic Programming and Optimal Control, 4th Edi-
tion. Vol. 2. Athena Scientific.

Bertsekas, D. P., 2017. Dynamic Programming and Optimal Control, 4th Edi-
tion. Vol. 1. Athena Scientific.

Bertsekas, D. P., Shreve, S. E., 1978. Stochastic Optimal Control: The Discrete
Time Case. Academic Press.

Bertsekas, D. P., Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming. Athena
Scientific.

Bertsekas, D. P., Yu, H., 30 March – 2 April 2009. Basis function adaptation
methods for cost approximation in MDP. In: Proceedings 2009 IEEE Sym-
posium on Approximate Dynamic Programming and Reinforcement Learn-
ing (ADPRL-09). Nashville, US, pp. 74–81.

Beuchat, P., Georghiou, A., Lygeros, J., 2016. Approximate dynamic program-
ming: a Q-function approach. http://arxiv.org/abs/1602.07273.

Bhatnagar, S., Sutton, R., Ghavamzadeh, M., Lee, M., 2009. Natural actor-critic
algorithms. Automatica 45 (11), 2471–2482.

Borrelli, F., Bemporad, A., Morari, M., 2017. Predictive Control for Linear and
Hybrid Systems. Cambridge University Press, Cambridge, UK.

Bradtke, S. J., Barto, A. G., 1996. Linear least-squares algorithms for temporal
difference learning. Machine Learning 22 (1–3), 33–57.

Bradtke, S. J., Duff, M. O., 1995. Reinforcement learning methods for
continuous-time markov decision problems. In: Advances in neural infor-
mation processing systems (NIPS). pp. 393–400.

Buşoniu, L., Babuška, R., De Schutter, B., 2008. A comprehensive survey of
multi-agent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics. Part C: Applications and Reviews 38 (2), 156–172.

Buşoniu, L., Babuška, R., De Schutter, B., Ernst, D., 2010. Reinforcement
Learning and Dynamic Programming Using Function Approximators. Au-
tomation and Control Engineering. Taylor & Francis CRC Press.

Buşoniu, L., Lazaric, A., Ghavamzadeh, M., Munos, R., Babuška, R., De
Schutter, B., 2011. Least-squares methods for policy iteration. In: Wier-
ing, M., van Otterlo, M. (Eds.), Reinforcement Learning: State of the Art.
Vol. 12 of Adaptation, Learning, and Optimization. Springer, pp. 75–109.

Buşoniu, L., Munos, R., Babuška, R., 2012. A review of optimistic planning
in Markov decision processes. In: Lewis, F., Liu, D. (Eds.), Reinforcement
Learning and Adaptive Dynamic Programming for Feedback Control. Wiley.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., LeCun, Y., 2015. The
loss surfaces of multilayer networks. In: Artificial Intelligence and Statistics.
pp. 192–204.

Dayan, P., 1993. Improving generalization for temporal difference learning:
The successor representation. Neural Computation 5 (4), 613–624.

de Bruin, T., Kober, J., Tuyls, K., Babuška, R., 2018. Integrating state rep-
resentation learning into deep reinforcement learning. IEEE Robotics and
Automation Letters 3 (3), 1394–1401.

de Farias, D. P., Roy, B. V., 2003. The linear programming approach to approx-
imate dynamic programming. Operations Research 51 (6), 850–865.

Deisenroth, M., Neumann, G., Peters, J., 2011. A survey on policy search for
robotics. Foundations and Trends in Robotics 2 (1–2), 1–141.

Diehl, M., Amrit, R., Rawlings, J. B., 2011. A lyapunov function for economic
optimizing model predictive control. IEEE Transactions on Automatic Con-
trol 56 (3), 703–707.

Engel, Y., Mannor, S., Meir, R., 7–11 August 2005. Reinforcement learning

21

with Gaussian processes. In: Proceedings 22nd International Conference on
Machine Learning (ICML-05). Bonn, Germany, pp. 201–208.

Ernst, D., Geurts, P., Wehenkel, L., 2005. Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research 6, 503–556.

Ernst, D., Glavić, M., Capitanescu, F., Wehenkel, L., 2009. Reinforcement
learning versus model predictive control: A comparison on a power sys-
tem problem. IEEE Transactions on Systems, Man, and Cybernetics—Part
B: Cybernetics 39 (2), 517–529.

Farahmand, A.-m., Ghavamzadeh, M., Szepesvári, C., Mannor, S., 2016. Reg-
ularized policy iteration with nonparametric function spaces. The Journal of
Machine Learning Research 17 (1), 4809–4874.

Farahmand, A. M., Ghavamzadeh, M., Szepesvári, Cs., Mannor, S., 2009. Reg-
ularized policy iteration. In: Koller, D., Schuurmans, D., Bengio, Y., Bot-
tou, L. (Eds.), Advances in Neural Information Processing Systems 21. MIT
Press, pp. 441–448.

Finn, C., Tan, X. Y., Duan, Y., Darrell, T., Levine, S., Abbeel, P., 2016. Deep
spatial autoencoders for visuomotor learning. In: Robotics and Automation
(ICRA), 2016 IEEE International Conference on. IEEE, pp. 512–519.

Franklin, G. F., Powell, D. J., Workman, M. L., 1998. Digital Control of Dy-
namic Systems. Vol. 3. Addison-wesley Menlo Park.

Friedrich, S. R., Buss, M., 2017. A robust stability approach to robot rein-
forcement learning based on a parameterization of stabilizing controllers. In:
International Conference on Robotics and Automation (ICRA). pp. 3365–
3372.

Geist, M., Pietquin, O., 2013. Algorithmic survey of parametric value func-
tion approximation. IEEE Transactions on Neural Networks and Learning
Systems 24 (6), 845–867.

Ghavamzadeh, M., Mannor, S., Pineau, J., Tamar, A., 2015. Bayesian rein-
forcement learning: A survey. Foundations and Trends in Machine Learning
8 (5-6), 359–492.

Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y., 2016. Deep learning.
Vol. 1. MIT press Cambridge.

Gordon, G., 9–12 July 1995. Stable function approximation in dynamic pro-
gramming. In: Proceedings 12th International Conference on Machine
Learning (ICML-95). Tahoe City, US, pp. 261–268.

Görges, D., 2017. Relations between model predictive control and reinforce-
ment learning. IFAC-PapersOnLine 50 (1), 4920 – 4928, 20th IFAC World
Congress.

Gosavi, A., 2009. Reinforcement learning: A tutorial survey and recent ad-
vances. INFORMS Journal on Computing 21 (2), 178–192.

Greensmith, E., Bartlett, P. L., Baxter, J., 2004. Variance reduction techniques
for gradient estimates in reinforcement learning. Journal of Machine Learn-
ing Research 5 (Nov), 1471–1530.

Grimm, G., Messina, M., Tuna, S., Teel, A., 2005. Model predictive control:
For want of a local control Lyapunov function, all is not lost. IEEE Transac-
tions on Automatic Control 50 (5), 546–558.

Grondman, I., Buşoniu, L., Lopes, G., Babuška, R., 2012. A survey of actor-
critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems Man and Cybernetics Part B-Cybernetics 42 (6),
1291–1307.

Grüne, L., 2004. Error estimation and adaptive discretization for the dis-
crete stochastic Hamilton-Jacobi-Bellman equation. Numerische Mathe-
matik 99 (1), 85–112.

Grüne, L., Pannek, J., 2016. Nonlinear Model Predictive Control: Theory and
Algorithms, 2nd Edition. Springer.

Gu, S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., Levine, S.,
2017. Interpolated policy gradient: Merging on-policy and off-policy gra-
dient estimation for deep reinforcement learning. In: Advances in Neural
Information Processing Systems. pp. 3849–3858.

Hafner, R., Riedmiller, M., 2011. Reinforcement learning in feedback control.
Machine learning 84 (1-2), 137–169.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D., 2017.
Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dab-
ney, W., Horgan, D., Piot, B., Azar, M., Silver, D., 2017. Rainbow:
Combining improvements in deep reinforcement learning. arXiv preprint
arXiv:1710.02298.

Hinton, G. E., Salakhutdinov, R. R., 2006. Reducing the dimensionality of data
with neural networks. Science 313 (5786), 504–507.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al., 2001. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies.

Hornik, K., 1991. Approximation capabilities of multilayer feedforward net-
works. Neural networks 4 (2), 251–257.

Ioffe, S., Szegedy, C., 2015. Batch normalization: accelerating deep network
training by reducing internal covariate shift. In: Int. Conf. Machine Learning
(ICML).

Jaakkola, T., Jordan, M. I., Singh, S. P., 1994. On the convergence of stochas-
tic iterative dynamic programming algorithms. Neural Computation 6 (6),
1185–1201.

Jaakkola, T., Singh, S. P., Jordan, M. I., 1995. Reinforcement learning algo-
rithm for partially observable markov decision problems. In: Advances in
Neural Information Processing Systems 7. MIT Press, pp. 345–352.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D.,
Kavukcuoglu, K., 2017. Reinforcement learning with unsupervised auxil-
iary tasks. In: Int. Conf. Learning Representations (ICLR).

Jiang, Y., Jiang, Z.-P., 2012. Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics. Au-
tomatica 48 (10), 2699 – 2704.

Jonschkowski, R., Brock, O., 2015. Learning state representations with robotic
priors. Autonomous Robots 39 (3), 407–428.

Jonschkowski, R., Hafner, R., Scholz, J., Riedmiller, M., 2017. PVEs: Position-
velocity encoders for unsupervised learning of structured state representa-
tions. In: New Frontiers for Deep Learning in Robotics Workshop at RSS.

Kaelbling, L. P., Littman, M. L., Moore, A. W., 1996. Reinforcement learning:
A survey. Journal of Artificial Intelligence Research 4, 237–285.

Kakade, S., 2001. A natural policy gradient. In: Dietterich, T. G., Becker, S.,
Ghahramani, Z. (Eds.), Advances in Neural Information Processing Systems
14. MIT Press, pp. 1531–1538.

Kakade, S., Langford, J., 2002. Approximately optimal approximate reinforce-
ment learning. In: ICML. Vol. 2. pp. 267–274.

Kamien, M. I., Schwartz, N. L., 2012. Dynamic optimization: the calculus
of variations and optimal control in economics and management. Courier
Corporation.

Khargonekar, P. P., Dahleh, M. A., 2018. Advancing systems and control re-
search in the era of ml and ai. Annual Reviews in Control.

Kingma, D., Ba, J., 2014. Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980.

Kober, J., Bagnell, J. A., Peters, J., 2013. Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research 32 (11), 1238–1274.

Kocsis, L., Szepesvári, C., 18–22 September 2006. Bandit based Monte-Carlo
planning. In: Proceedings 17th European Conference on Machine Learning
(ECML-06). Berlin, Germany, pp. 282–293.

Konda, V. R., Tsitsiklis, J. N., 2003. On actor-critic algorithms. SIAM Journal
on Control and Optimization 42 (4), 1143–1166.

Koutnı́k, J., Cuccu, G., Schmidhuber, J., Gomez, F., 2013. Evolving large-scale
neural networks for vision-based reinforcement learning. In: Proceedings of
the 15th annual conference on Genetic and evolutionary computation. ACM,
pp. 1061–1068.

Kretchmar, R. M., Young, P. M., Anderson, C. W., Hittle, D. C., Anderson,
M. L., Delnero, C. C., Dec 2001. Robust reinforcement learning control
with static and dynamic stability. IEEE Transactions on Neural Networks
and Learning Systems 11 (15), 1469–1500.

Lagoudakis, M. G., Parr, R., 2003. Least-squares policy iteration. Journal of
Machine Learning Research 4, 1107–1149.

Landau, I. D., Lozano, R., M’Saad, M., Karimi, A., 2011. Adaptive Control:
Algorithms, Analysis and Applications, 2nd Edition. Communications and
Control Engineering. Springer-Verlag London.

Lange, S., Riedmiller, M., Voigtlander, A., 2012. Autonomous reinforcement
learning on raw visual input data in a real world application. In: Int. Joint
Conf. Neural Networks (IJCNN).

Lazaric, A., Ghavamzadeh, M., Munos, R., 2012. Finite-sample analysis of
least-squares policy iteration. Journal of Machine Learning Research 13,
3041–3074.

Lee, A. X., Levine, S., Abbeel, P., 2017. Learning visual servoing with deep
features and fitted q-iteration. CoRR abs/1703.11000.
URL http://arxiv.org/abs/1703.11000

Levine, S., Finn, C., Darrell, T., Abbeel, P., 2016. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research 17 (1),
1334–1373.

Levine, S., Koltun, V., 2013. Guided policy search. In: International Conference
on Machine Learning. pp. 1–9.

Lewis, F., Liu, D. (Eds.), 2012. Reinforcement Learning and Adaptive Dynamic

22

http://arxiv.org/abs/1703.11000

Programming for Feedback Control. Wiley.
Lewis, F. L., Vrabie, D., 2009. Reinforcement learning and adaptive dynamic

programming for feedback control. IEEE Circuits and Sytems Magazine
9 (3), 32–50.

Lewis, F. L., Vrabie, D., Vamvoudakis, K. G., Dec 2012. Reinforcement learn-
ing and feedback control: Using natural decision methods to design optimal
adaptive controllers. IEEE Control Systems 32 (6), 76–105.

Li, Y., 2017. Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274.

Liberzon, D., 2011. Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton University Press, Princeton, NJ, USA.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
Wierstra, D., 2015. Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.

Lin, L.-J., Aug. 1992. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine Learning 8 (3–4), 293–321, spe-
cial issue on reinforcement learning.

Mann, T. A., Mannor, S., Precup, D., 2015. Approximate value iteration with
temporally extended actions. Journal of Artificial Intelligence Research 53,
375–438.

Melo, F. S., Meyn, S. P., Ribeiro, M. I., 5–9 July 2008. An analysis of reinforce-
ment learning with function approximation. In: Proceedings 25th Interna-
tional Conference on Machine Learning (ICML-08). Helsinki, Finland., pp.
664–671.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver,
D., Kavukcuoglu, K., 2016. Asynchronous methods for deep reinforcement
learning. In: International Conference on Machine Learning. pp. 1928–
1937.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., Hassabis, D., 2015. Human-level control through deep
reinforcement learning. Nature 518, 529–533.

Modares, H., Lewis, F. L., Jiang, Z. P., Oct 2015. Hin f ty tracking control of
completely unknown continuous-time systems via off-policy reinforcement
learning. IEEE Transactions on Neural Networks and Learning Systems
26 (10), 2550–2562.

Moore, A. W., Atkeson, C. G., 1993. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning 13, 103–130.

Moore, K. L., 2012. Iterative learning control for deterministic systems.
Springer Science & Business Media.

Munos, R., 2014. From bandits to Monte Carlo tree search: The optimistic
principle applied to optimization and planning. Foundations and Trends in
Machine Learning 7 (1), 1–130.

Munos, R., Moore, A., 2002. Variable-resolution discretization in optimal con-
trol. Machine Learning 49 (2–3), 291–323.

Munos, R., Stepleton, T., Harutyunyan, A., Bellemare, M., 2016. Safe and effi-
cient off-policy reinforcement learning. In: Advances in Neural Information
Processing Systems. pp. 1054–1062.

Munos, R., Szepesvári, Cs., 2008. Finite time bounds for fitted value iteration.
Journal of Machine Learning Research 9, 815–857.

Olah, C., Mordvintsev, A., Schubert, L., 2017. Feature visualization. Distill
2 (11), e7.

Ormoneit, D., Sen, S., 2002. Kernel-based reinforcement learning. Machine
Learning 49 (2–3), 161–178.

Parisotto, E., Ba, J. L., Salakhutdinov, R., 2015. Actor-mimic: Deep multitask
and transfer reinforcement learning. arXiv preprint arXiv:1511.06342.

Pazis, J., Lagoudakis, M., 14–18 June 2009. Binary action search for learning
continuous-action control policies. In: Proceedings of the 26th International
Conference on Machine Learning (ICML-09). Montreal, Canada, pp. 793–
800.

Peters, J., Schaal, S., 2008. Natural actor-critic. Neurocomputing 71 (7–9),
1180–1190.

Postoyan, R., Buşoniu, L., Nešić, D., Daafouz, J., 2017. Stability analysis of
discrete-time infinite-horizon optimal control with discounted cost. IEEE
Transactions on Automatic Control 62 (6), 2736–2749.

Powell, W. B., 2012. Approximate Dynamic Programming: Solving the Curses
of Dimensionality, 2nd Edition. Wiley.

Precup, D., Sutton, R. S., Singh, S. P., 2000. Eligibility traces for off-policy
policy evaluation. In: ICML. Citeseer, pp. 759–766.

Puterman, M. L., 1994. Markov Decision Processes—Discrete Stochastic Dy-

namic Programming. Wiley.
Raghu, M., Poole, B., Kleinberg, J., Ganguli, S., Sohl-Dickstein, J.,

2016. On the expressive power of deep neural networks. arXiv preprint
arXiv:1606.05336.

Rajeswaran, A., Lowrey, K., Todorov, E. V., Kakade, S. M., 2017. Towards
generalization and simplicity in continuous control. In: Advances in Neural
Information Processing Systems. pp. 6553–6564.

Recht, B., Re, C., Wright, S., Niu, F., 2011. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In: Advances in neural information
processing systems. pp. 693–701.

Riedmiller, M., 2005. Neural fitted q iteration–first experiences with a data ef-
ficient neural reinforcement learning method. In: European Conference on
Machine Learning. Springer, pp. 317–328.

Ross, S., Pineau, J., Chaib-draa, B., Kreitmann, P., Jul. 2011. A bayesian ap-
proach for learning and planning in partially observable markov decision
processes. Journal of Machine Learning Research 12, 1729–1770.

Rummery, G. A., Niranjan, M., September 1994. On-line Q-learning
using connectionist systems. Tech. Rep. CUED/F-INFENG/TR166,
Engineering Department, Cambridge University, UK, available at
http://mi.eng.cam.ac.uk/reports/svr-ftp/rummery tr166.ps.Z.

Russell, S. J., Norvig, P., 2016. Artificial Intelligence: A Modern Approach,
3rd Edition. Pearson Education.

Salimans, T., Kingma, D. P., 2016. Weight normalization: A simple reparam-
eterization to accelerate training of deep neural networks. In: Advances in
Neural Information Processing Systems. pp. 901–909.

Schaul, T., Horgan, D., Gregor, K., Silver, D., 2015. Universal value func-
tion approximators. In: International Conference on Machine Learning. pp.
1312–1320.

Schaul, T., Quan, J., Antonoglou, I., Silver, D., 2016. Prioritized experience
replay. In: International Conference on Learning Representations (ICLR).

Scherrer, B., 21–24 June 2010. Should one compute the Temporal Difference
fix point or minimize the Bellman Residual? the unified oblique projection
view. In: Proceedings 27th International Conference on Machine Learning
(ICML-10). Haifa, Israel, pp. 959–966.

Schmidhuber, J., 1991. Adaptive confidence and adaptive curiosity. Tech. rep.,
Arcisstr. 21, 800 Munchen 2.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., Moritz, P., 2015a. Trust region
policy optimization. In: International Conference on Machine Learning. pp.
1889–1897.

Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P., 2015b. High-
dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Shelhamer, E., Mahmoudieh, P., Argus, M., Darrell, T., 2016. Loss is its own
reward: Self-supervision for reinforcement learning. arXiv:1612.07307.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.,
2016. Mastering the game of go with deep neural networks and tree search.
nature 529 (7587), 484–489.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M., 2014.
Deterministic policy gradient algorithms. In: ICML.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez,
A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F.,
Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D., 2017. Mastering
the game of go without human knowledge. Nature 550, 354–359.

Singh, S., Jaakkola, T., Littman, M. L., Szepesvári, Cs., 2000. Convergence re-
sults for single-step on-policy reinforcement-learning algorithms. Machine
Learning 38 (3), 287–308.

Singh, S., Sutton, R., 1996. Reinforcement learning with replacing eligibility
traces. Machine Learning 22 (1–3), 123–158.

Sutton, R. S., Barto, A. G., 1998. Reinforcement Learning: An Introduction.
MIT Press.

Sutton, R. S., Barto, A. G., 2018. Reinforcement Learning: An Introduction,
2nd Edition. MIT Press.

Sutton, R. S., Mahmood, A. R., White, M., 2016. An emphatic approach to the
problem of off-policy temporal-difference learning. The Journal of Machine
Learning Research 17 (1), 2603–2631.

Sutton, R. S., McAllester, D., Singh, S., Mansour, Y., 2000. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In: Ad-
vances in Neural Information Processing Systems 12. MIT Press, pp. 1057–

23

1063.
Szepesvári, Cs., 2010. Algorithms for Reinforcement Learning. Morgan &

Claypool Publishers.
Thiery, C., Scherrer, B., 21–24 June 2010. Least-squares λ policy iteration:

Bias-variance trade-off in control problems. In: Proceedings 27th Interna-
tional Conference on Machine Learning (ICML-10). Haifa, Israel, pp. 1071–
1078.

Thrun, S. B., 1992. Efficient exploration in reinforcement learning. Tech. rep.,
Pittsburgh, PA, USA.

Tieleman, T., Hinton, G., 2012. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA: Neural networks for
machine learning 4 (2), 26–31.

Tolić, D., Fierro, R., Ferrari, S., 2012. Optimal self-triggering for nonlinear sys-
tems via approximate dynamic programming. In: IEEE Multi-Conference
on Systems and Control. pp. 879–884.

Tolić, D., Palunko, I., 2017. Learning suboptimal broadcasting intervals in
multi-agent systems. IFAC-PapersOnLine 50 (1), 4144 – 4149, 20th IFAC
World Congress.

Tsitsiklis, J. N., Van Roy, B., 1997. An analysis of temporal difference learn-
ing with function approximation. IEEE Transactions on Automatic Control
42 (5), 674–690.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R. E., Ghahramani, Z., Levine, S.,
2018. The mirage of action-dependent baselines in reinforcement learning.
arXiv preprint arXiv:1802.10031.

van Hasselt, H., 2010. Double q-learning. In: Advances in Neural Information
Processing Systems. pp. 2613–2621.

van Hasselt, H., Guez, A., Hessel, M., Mnih, V., Silver, D., 2016a. Learning
values across many orders of magnitude. In: Neural Information Processing
Systems (NIPS).

van Hasselt, H., Guez, A., Silver, D., 2016b. Deep reinforcement learning with
double q-learning. In: Conf. Artificial Intelligence (AAAI).

Wang, Y., O’Donoghue, B., Boyd, S., 2014. Approximate dynamic program-
ming via iterated bellman inequalities. International Journal of Robust and
Nonlinear Control 25 (10), 1472–1496.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., de Fre-
itas, N., 2016. Sample efficient actor-critic with experience replay. arXiv
preprint arXiv:1611.01224.

Watkins, C. J. C. H., 1989. Learning from delayed rewards. Ph.D. thesis, King’s
College, Cambridge.

Watkins, C. J. C. H., Dayan, P., 1992. Q-learning. Machine Learning 8, 279–
292.

Watter, M., Springenberg, J., Boedecker, J., Riedmiller, M., 2015. Embed to
control: A locally linear latent dynamics model for control from raw images.
In: Neural Information Processing Systems (NIPS).

Weinstein, A., Littman, M. L., 25–19 June 2012. Bandit-based planning and
learning in continuous-action Markov decision processes. In: Proceed-
ings 22nd International Conference on Automated Planning and Scheduling
(ICAPS-12). São Paulo, Brazil.

Wiering, M., van Otterlo, M. (Eds.), 2012. Reinforcement Learning: State of
the Art. Vol. 12. Springer.

Williams, R. J., 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine Learning 8, 229–256.

Williams, R. J., Peng, J., 1991. Function optimization using connectionist rein-
forcement learning algorithms. Connection Science 3 (3), 241–268.

Wiskott, L., Sejnowski, T. J., 2002. Slow feature analysis: Unsupervised learn-
ing of invariances. Neural Computation 14 (4), 715–770.

Yang, X., Liu, D., Wei, Q., 2014. Online approximate optimal control for affine
non-linear systems with unknown internal dynamics using adaptive dynamic
programming. IET Control Theory Applications 8 (16), 1676–1688.

Yu, H., Bertsekas, D. P., 2009. Convergence results for some temporal dif-
ference methods based on least squares. IEEE Transactions on Automatic
Control 54 (7), 1515–1531.

Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O., 2016. Under-
standing deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530.

Zhang, H., Cui, L., Zhang, X., Luo, Y., Dec 2011. Data-driven robust approxi-
mate optimal tracking control for unknown general nonlinear systems using
adaptive dynamic programming method. IEEE Transactions on Neural Net-
works 22 (12), 2226–2236.

Zhang, J., Springenberg, J. T., Boedecker, J., Burgard, W., 2017. Deep re-
inforcement learning with successor features for navigation across similar
environments. In: Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on. IEEE, pp. 2371–2378.

24

	Introduction
	Basics of reinforcement learning
	Optimal control problem and its solution
	Offline model-based methods for finite state-action spaces
	Online temporal-difference RL for finite spaces

	Approximate reinforcement learning
	Approximate representations
	Offline approximate RL
	Online, temporal-difference approximate RL
	Policy gradient and actor-critic methods

	Control-theoretic approaches and viewpoint
	Stability considerations for reinforcement learning
	Linear programming approaches

	Deep reinforcement learning
	Opportunities and pitfalls
	Common solution components
	Popular DRL algorithms
	Extensions

	Outlook
	Research areas
	Generalizing the problem
	Other open issues

