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(a) Interactive Learning scheme. (b) Simulated environments for validation.
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(c) Results.

Figure 1: Proposed method, experiments, and results
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1 INTRODUCTION
Policy learning methods with humans in the loop have been be-
coming more popular in the last years within the community of
Machine Learning and Robotics. There have been varied approaches
for training a policy with human interventions depending on the
kind of interaction the human teacher has with the robot learner.
Teachers could train a policy with evaluations/rewards related to
the executed actions [6, 8], or with episodic evaluations that are rel-
ative to other executions as in learning from preferences[1, 3]. Users
could also directly teach how to perform with corrective demon-
strations [4, 5] or relative corrections [7]. Additionally, Learning
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agents can model their policy uncertainty/confidence and use it to
query the teacher for input about that uncertain situation [2].

In this work we propose a learning scheme that integrates human
feedback in a data aggregation scheme, along with active learning
queries in order to feed the systemwithmore informationwhenever
the policy is uncertain. The introduced learning method features
two main contributions: i) interpreting and combining both evalua-
tive and corrective feedback to shape directly the policy model with
a data aggregation approach; ii) modeling epistemic and aleatoric
uncertainty for actively querying the teacher either whenever the
agent visit unseen states or when the agent has received ambiguous
demonstrations.

2 LEARNING METHOD
The proposed interactive learning approach assumes there is a
teacher who occasionally intervenes in the learning loop. It could
be with corrective demonstrations, in situations in which the right
action is known by her/him, or with rewards, when the action
execution is less clear but the teacher has qualitative insights about
the transitions of the agent.

The agent follows a stochastic policy 𝜋 (𝑎 |𝑠) that is shaped with
both kinds of feedback. Evaluative feedback is given with respect to
the last action, positive rewards increase the probability of choosing
the executed action 𝑎𝑡 (𝑠𝑡 ) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝜋 (𝑎 |𝑠𝑡 ), whereas negative
rewards decrease its probability. On the other hand, corrective
demonstrations 𝑎ℎ𝑡 are obtained before the execution of the current
policy action 𝑎𝑡 in order to replace it. Thus, during the intervention,
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the user is able to take over the operation of the agent, and the
policy will be updated to increase the probability 𝜋 (𝑎ℎ𝑡 |𝑠𝑡 ).

In order to model the uncertainties used for active learning, two
different strategies are applied for measuring each of them. The
epistemic uncertainty (model uncertainty) is calculated based on
the variability of the prediction of an ensemble of neural networks
computing 𝜋 (𝑎 |𝑠). The aleatoric uncertainty (data uncertainty) is
computed with a model that predicts the probability of choosing
the wrong action, that is trained with the recorded demonstrations
and the predictions of 𝜋 over the states of the demonstrations.
Therefore, for states with ambiguous demonstrations, this model is
able to predict high probability of wrong actions because the policy
is predicting only one of the demonstrated actions, i.e. having an
error of prediction for some of those demonstrations.

3 EXPERIMENTS AND RESULTS
Several experiments have been carried out in order to evaluate the
performance of the proposed approach. For the comparisons, it
has been considered algorithms based on only either evaluative
or corrective feedback. The environments used for the validation
involved both simulated problems (OpenAI Gym environments),
and a real robot arm KUKA iiwa 7. Additionally, the experiments
involved human teachers, along with oracles for exhaustive evalua-
tions and ablation studies. The results showed that the proposed

method combining both kinds of human feedback and the queries
based on the two kinds of policy uncertainty outperformed the
other baselines, especially in conditions in which the teachers give
noisy or mistaken feedback.
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