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Abstract

In order to deploy robots that could be adapted by non-expert users, Interactive Imitation
Learning (IIL) methods must be flexible regarding the interaction preferences of the teacher,
and avoid assumptions of perfect teachers (oracles), while considering they make mistakes influ-
enced by diverse human factors. In this work, we propose an IIL method that improves the
human-robot interaction for non-expert and imperfect teachers in two directions. First, includ-
ing uncertainty estimation to endow the agents with a lack of knowledge awareness (Epistemic
uncertainty), and demonstration ambiguity awareness (Aleatoric uncertainty), such that the robot
can request human input when it is deemed more necessary. Secondly, the proposed method
enables the teachers to train with the flexibility of using corrective demonstrations, evaluative
reinforcements, and implicit positive feedback. Experimental results show improvement in learn-
ing convergence with respect to other learning methods when the agent learns from highly
ambiguous teachers. Additionally, in a user study, it was found that the components of the
proposed method improve the teaching experience, and the data efficiency of the learning process.

Keywords: Interactive Imitation Learning, Human Reinforcement, Corrective Demonstrations, Active
Learning, Uncertainty.

1 Introduction

Learning the solutions for sequential decision-
making problems in robotics has become a deeply
studied alternative to traditional control engineer-
ing approaches. Leveraging the powerful capabili-
ties of Machine Learning (ML) methods, it is pos-
sible to bypass most of the analytical and empir-
ical work a skilled engineer should perform. Most
of the research and big successes in this regard
have been obtained through autonomous learning
schemes like Reinforcement Learning (RL) [1–5].

However, despite the impressive achievements,
RL suffers from limitations regarding data ineffi-
ciency, the safety of the system, and the difficulties
of reward engineering. The former limitation is
especially a problem for learning with robots since
more computational power does not fully solve
the problem, while the latter is not so frequently
discussed, and is an underrated problem in the
literature because most of the recent develop-
ments have been evaluated in well-standardized
benchmarks, that already include a defined reward
function.

1

Neural Computing and Applications 2023



Springer Nature 2021 LATEX template

2

Imitation Learning (IL) [6] is a more direct
learning approach that benefits from the knowl-
edge of a teacher who demonstrates how to
perform a task (i.e., provides a dataset of sam-
ples), instead of hand coding the required behav-
iors. After recording the demonstrations, a policy
model is trained in order to imitate that dataset
either with Behavioral Cloning (BC) [7, 8] or with
Inverse Reinforcement Learning (IRL) [9].

Interactive Imitation Learning (IIL) [10]
expands the possibilities of IL approaches. With
IIL, policies are learned incrementally while the
teacher is in the learning loop providing feedback
that improves the knowledge of the agent in every
new situation, which leads to obtaining higher
quality data compared to only demonstrating the
execution of the task. The feedback provided on
top of the executions of the learning policy reduces
the issues related to the distribution shift [11, 12].

Additionally, these interactive methods enable
users to transfer their knowledge with other
modalities of interaction, not only explicitly show-
ing what the agent should do, but also guid-
ing with evaluative feedback from the teacher,
i.e., reinforcements (rewards or punishments), or
also by comparing the performance of different
agents/policies with learning from preferences or
rankings. The use of evaluative feedback bridges
the worlds of RL and IL [13–16].

Depending on the kind of task to be solved,
and the expertise of the teacher in solving or
understanding it, some of those modalities can
be more convenient. Showing the agent what to
do when it makes a mistake is the most efficient
way to correct a policy, however, this requires
that the teacher understands the dynamics of the
environment well, and knows a good strategy to
achieve the goal of the task. Providing evaluations
of the policy or comparing different policy execu-
tions enables less expert users to teach a robot,
since they do not need to know what should be
done, rather just to have enough insights about
what is good/bad or what is better/worse. How-
ever, human reinforcements and preferences are
kinds of feedback that contain less information
than demonstrative feedback, therefore, methods
based on them tend to be less data efficient.

Nevertheless, the choice of the preferred feed-
back modality is something that could change
within the same learning process of a task. There
could be situations wherein users are less skilled
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Fig. 1 Interactive Imitation Learning with corrective and
evaluative feedback, and active queries based on epistemic
and aleatoric uncertainty.

to demonstrate the right action than in some oth-
ers. Also, it could happen that after some training
time, users experience tiredness that leads to loss
of concentration and engagement, consequently,
having less insights about the right demonstra-
tions, which could open the possibility of pro-
viding less demanding feedback, and leveraging
human reinforcements.

This work introduces ICREATe (Interactive
Corrections and Reinforcements for an Epis-
temic and Aleatoric uncertainty-aware Teaching),
a method that enables users to train agents with
corrective demonstrations and evaluative feed-
back interactively in a Data Aggregation (DAgger)
scheme, while employing the two kinds of uncer-
tainty for active learning (see Figure 1).

The proposed method ICREATe improves the
human-robot interaction experience via active
learning (active queries from the robot to the
user). The method endows robots with the capa-
bilities of predicting the uncertainty of the policy
in order to notify the teacher when the robot is
not confident about the action to be executed.
However, unlike previous works, two uncertainties
are considered for the active queries: i) Epis-
temic uncertainty, which indicates the lack of
knowledge/data; ii) Aleatoric uncertainty, which
considers the noise in the observations, produced
by inconsistent or ambiguous feedback signals.
Moreover, the system improves the data efficiency,
aggregating implicit rewarded feedback in situa-
tions wherein teachers’ silence could be considered
as positive rewards. For instance, when teachers
do not correct actions and let the robot execute
them despite it signaling uncertainty.
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During training time, the teachers could decide
anytime either to reward/punish the agent or to
correct the policy with an action demonstration,
both intermittently. Both kinds of feedback are
smoothly combined to modify the same policy
model, affecting the probability of choosing the
actions to be taken.

Unlike previous works based on data aggrega-
tion, the use of aleatoric uncertainty-based queries
allows avoiding the assumption of perfect teach-
ers. Extensive evaluations with noisy simulated
and real teachers show that this method can be
widely applied in many scenarios with non-expert
teachers, while still being able to learn high-
performance policies in both simulated and real
robot systems, and improving the user experience.

2 Background

2.1 Markov Decision Processes

Most of the RL and IL methods are based on the
Markov Decision Processes (MDP) framework [1].
In this framework, the agent executes actions a in
order to control the situation of the environment
described by the state s. Those actions are exe-
cuted in order to make the transitions of the state
follow the objective of the task, represented by the
reward r. The policy π is the model that maps
from states to actions, and the optimal policy is
the one obtaining the maximum accumulated dis-
counted reward. The dynamics of the environment
are described by the transition function T , map-
ping from the current state st and the action at
executed in that state to the next state st+1. The
transition functions in MDPs feature the Marko-
vian property, which means the transition to state
st+1 depends only on the current state st and
action at. With the Markov property, the decisions
are only a function of the current state in every
time step, computed with the policy π(st).

2.2 Learning from human input

There are many methods for learning policies from
experience and human teachers in the learning
loop. The main two modes of user interaction with
a policy learning agent are with the teacher pro-
viding corrective demonstrations, or with human
reinforcements [10].

2.2.1 Learning from Human
Reinforcements

The difficulties for reward engineering in RL have
motivated to explore the possibility of replac-
ing or complementing the MDP encoded reward
function with human teacher reinforcements or
evaluations. Seminal works in this direction eval-
uated to replace the reward function with the
rewards a human teacher would provide in an
interactive learning fashion, within standard RL
methods [17–19].

However, human rewards have different con-
siderations regarding past, present, and future,
as regarded by the Bellman optimality [1] within
MDPs. Some works have studied the intentions
behind human reinforcements [20, 21], which have
been useful for adapting the learning methods to
human teachers.

Some works have proposed to learn from these
human evaluations while using them directly to
influence the decisions exclusively in the situation
in which they were given, i.e., in the state that
is rewarded. In Policy Shaping [22], the human
evaluation is used for updating the probability of
choosing the action at the agent executed in the
state st.

Training an Agent Manually via Evaluative
Reinforcement (TAMER) [14, 23] is a framework
that also considers the feedback for directly influ-
encing only the action that is being executed in
the corresponding state (if the human response
delay is disregarded), without using it for comput-
ing a return. It assumes the feedback is directly
conveying the desirability of the action and could
be taken directly as a value rather than a reward.
Therefore, the human reinforcement h is used for
learning a Human model H(s, a) that tries to
predict that human signal. This model is used
for computing the policy with arg maxaH(st, a),
choosing the most desirable action according to
the feedback h given by the teacher, as shown in
Alg. 1.

2.2.2 Learning from Corrective
Demonstrations

In these methods, the human teacher is observ-
ing the agent performing the task, and whenever
a correction is required the teacher can intervene
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Algorithm 1 TAMER

1: Require: Experience D, and the policy
update frequency b

2: for t = 1,2,... do
3: if mod(t, b) is 0 then
4: update πθ from D
5: end if
6: observe state st
7: select action at from arg maxaH(st, a)
8: if teacher reinforcements h 6= 0 then
9: aggregate (st, at, h) to D

10: end if
11: execute action at
12: end for

for demonstrating the right action that the agent
records and uses for updating the policy.

Confidence-Based Autonomy [24] was one of
the seminal works in this direction, which models
the policy with a Gaussian Mixture Model (GMM)
used also for estimating the confidence of the pol-
icy. Whenever the policy is not confident about the
action to take in the visited state, it can actively
request a demonstration from the teacher that is
incorporated in the data for learning the policy.

A very well-known IL method in which the
teacher demonstrates the correct actions while
the agent keeps following the current policy is
Data Aggregation (DAgger) [25], which has shown
to be powerful for reducing compound errors,
given the distribution of the collected data is con-
trolled by the learning policy. It has motivated
the development of a family of methods SafeDAg-
ger [26], EnsembleDAgger [27], LazyDAgger [28],
or ThriftyDAgger [29], which deal in a different
way the teacher interventions in order to improve
feedback efficiency or safety.

One of those variations is Human Gated DAg-
ger (HG-DAgger) [30], which was proposed for
considering human teachers whose feedback qual-
ity could be degraded when not directly observing
the effect of the actions they demonstrate. With
this method the teachers do not need to demon-
strate every time step, but only when they deem a
correction necessary. In such a case, the teachers’
actions are executed by the agent instead of the
learning policy, improving the safety of the sys-
tem because when visiting risky states, the expert
can take over and return the agent to safe states.
Ensembles of Neural Networks (NNs) are used to

Algorithm 2 (HG-)DAgger

1: Require: Experience D, and the policy
update frequency b

2: for t = 1,2,... do
3: if mod(t, b) is 0 then
4: update πθ from D
5: end if
6: observe state st
7: select action at from the learner policy
8: if teacher takes control then
9: at as the action of the teacher ah

10: aggregate (st, at) to D
11: end if
12: execute action at
13: end for

model the policy, having the additional capability
of estimating the uncertainty of the policy, which
can be used for risk warnings. In Alg. 2 a sum-
marized pseudocode of HG-DAgger is presented,
wherein the policy is updated every b time steps
or even every episode.

Research has found that there are clear trends
in the preferences teachers have when training
agents, regarding the kind of feedback to use
[20, 31, 32]. However, no kind of feedback has
shown to be better than all the others in all pos-
sible contexts, and each of them has a potential
benefit in different situations. Hence, the possibil-
ity of using different interaction modes within one
learning framework is an open challenge with good
prospects for both the learning performance and
the user experience, which has not been widely
studied. Cycle-of-Learning [33] proposes to com-
bine different modalities in a sequential manner,
with different phases for each modality, and not
in a simultaneous scheme wherein the teacher can
choose what feedback to give at any moment. A
combination of corrections and evaluations can be
used simultaneously as proposed in [16], however,
the method works on top of a tabular RL method
that can face scalability limitations.

Corrective and Evaluative Interactive Learn-
ing (CEILing) [34] proposes a smooth combination
of corrective demonstrations and evaluations for
problems of high dimensionality. Nonetheless, it
does not make use of the entire spectrum of the
evaluative feedback, since it processes only posi-
tive evaluations, but not negative ones. Therefore
users cannot punish wrong behaviors, and they
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can only change them with corrective demonstra-
tions, requiring the teachers to always be experts
at the task execution.

This work proposes a framework that simi-
larly aims to combine both types of feedback,
but lets the user shape the policy with any
feedback without restriction, i.e., being able to
train policies even when using exclusively one of
them, or both combined. Additionally, the learn-
ing agent is endowed with awareness of unknown
states or ambiguous situations given the past feed-
back based on uncertainty estimation, which can
improve the teacher’s performance.

2.3 Types of Uncertainty

In ML, it is very important to know how reliable
is a model being trained. The loss function eval-
uated with the training, test, or validation sets is
a global measure that can be taken as an index of
the general reliability of the model, but it is not
useful for explaining how reliable each prediction
is.

Uncertainty estimation can provide more spe-
cific measures that can be used for understanding
how trustworthy the prediction of the model is
given an observation. The reliability of a model
can be described as a composition of two dif-
ferent uncertainties: the Epistemic and Aleatoric
uncertainties [35, 36].

Epistemic uncertainty explains whether the
model has knowledge about the observed situa-
tion (input), i.e., this uncertainty is high when the
model makes a prediction with an observation not
seen in the training data. This uncertainty can be
reduced by gathering more data that represents all
possible situations. Aleatoric uncertainty explains
how inconsistent the observations for training the
model have been. It accounts for the noise in the
data that makes it contradictory or ambiguous,
for instance when there is noise in the measure-
ments, or specifically in the context of IL, when
the teacher demonstrates contradictory actions for
the same state. Aleatoric uncertainty cannot be
reduced with the collection of more data.

Although each uncertainty models different
issues, their use is not mutually exclusive [37]. A
model can be considered reliable in predicting the
underlying phenomena that generated the train-
ing data if it obtains a low estimation of both
of these uncertainties. It means that very similar

situations were observed during training (epis-
temic certainty) and that those similar situations
did not introduce any inconsistency or ambiguity
(aleatoric certainty).

Uncertainty estimation is important for know-
ing the reliability, and in some cases, the safety
of the model when it is deployed. Nonetheless, it
is also useful to estimate uncertainty while still
learning, as it can support the process of find-
ing the best learning samples by means of active
queries. In IIL, various learning approaches have
used uncertainty estimation for generating active
queries [24, 30, 38, 39], however, no method so
far has focused on combining both uncertainties
within an IIL method, such that the agent com-
municates to the teacher its awareness of unseen
states and previous ambiguous interactions.

We propose to combine the prediction of
both uncertainties within a data aggregation IIL
scheme, helping to increase the users’ engagement
with the learning process in critical situations.
The proposed method is able to learn from the
two kinds of feedback, but additionally, aleatoric
uncertainty modeling is able to detect ambiguities
in the feedback. This occurs not only when there
are contradictory demonstrations or when there
are contradictory evaluations, but also when there
is feedback of a kind that contradicts feedback of
the other kind. For instance, when in two different
moments, for a specific state, an action is rewarded
and another action is demonstrated; or when an
action is demonstrated and later the same action
is punished.

3 Interactive Corrections and
Reinforcements for an
Epistemic and Aleatoric
uncertainty-aware Teaching
(ICREATe)

The IIL method ICREATe proposed in this paper
enables a teacher to occasionally intervene in
the learning loop by providing a feedback signal,
whenever she/he considers the action being exe-
cuted wrong, or in order to reinforce a correct
behavior.

It is important that the learning agent helps
to keep the teacher aware when it is required to
correct the policy, at least when the policy is not
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confident. If there would not be an active query,
the teacher could notice too late that feedback was
required and might need to wait until the same
situation happens again. Additionally, the agent
could end up in a dangerous/undesirable state.
Therefore, implementing active queries can help
with improving the data efficiency of the learning
process and the safety of the system.

In this method, the epistemic and aleatoric
uncertainties of the policy are modelled such that
the agent can convey to the teacher when it is
not confident as: i) it is facing an unseen situa-
tion, i.e., visiting states wherein the teacher has
not provided any feedback signal; ii) it is visiting
states in which the teacher has given ambiguous/-
contradictory feedback signals. With these queries
the teacher can decide whether to provide evalua-
tive or corrective feedback to the agent for either
accepting, rejecting, or explicitly correcting the
performed behavior.

ICREATe is composed of two main parts: i)
the integration of two different interaction modali-
ties for the teachers to train the agents: Corrective
and Evaluative Feedback (Section 3.1); ii) the esti-
mation of epistemic and aleatoric uncertainty to
generate active queries when the policy is uncer-
tain, to improve the teacher’s engagement with
the learning process (Section 3.2). The combina-
tion of these two modules leads to an additional
third component which is based on a passive pos-
itive feedback assumption, that labels some of the
state-action pairs that are not corrected or pun-
ished by the teacher with positive rewards, this is
elaborated in Section 3.3.

3.1 Learning from Corrective and
Evaluative Feedback

Teachers can share their insights about the pol-
icy execution through two different modes of
interaction: Corrective demonstrations or evalua-
tive reinforcements. Either of the two interaction
modes can be preferred at any moment depend-
ing on the complexity of the problem or the
current transitions, the expertise of the teachers,
their engagement, the performance of the learning
agent, or some other factors.

The policy π(a|s) predicts the probability of
choosing the action a given the state s. Both
kinds of feedback signals are directly used to mod-
ify the probability of choosing an action in the

update of the policy model π. When there is a
teacher intervention for providing a feedback sig-
nal, a triple (s, a, h) is aggregated to the training
dataset D, where ht is the evaluative signal. The
way the feedback is parsed and used to generate
the labels for training the policy with supervised
learning depends on the kind of feedback the
teacher provides as explained below:

3.1.1 Corrective Feedback:

The teacher can intervene to provide corrective
demonstrations whenever considered necessary as
the agent is performing wrong actions. Like in HG-
Dagger, actions demonstrated by the teacher are
not only recorded but also executed by the agent,
in order to improve the safety in the environment,
i.e., the intervention of the teacher is directly the
gating function that selects to execute the action
of the teacher instead of the one of the learner.

In this case, the teacher uses an interface that
allows to take over and control the robot at any
time. During the corrective demonstration at the
time step t, the demonstrated action ah is assumed
to implicitly receive a positive reward ht = 1 since
it is considered the right action, thus, the triple
(st, ah, 1) is added to D.

3.1.2 Evaluative Feedback:

The teacher can also intermittently provide an
evaluation of the executed action. Unlike the
corrective feedback that is executed during the
current time step in which it is provided, the
human reinforcements are an evaluation of the
executed action at−1 after observing its effect in
the transition from st−1 to st. Therefore the eval-
uation is associated to the previous time step t−1,
and the triple aggregated to D is (st−1, at−1, ht),
where ht is 1 or −1 depending on whether the
teacher reinforcement is a reward or a punishment
respectively.

3.1.3 From feedback to output labels
generation:

In order to train the policy in a supervised learn-
ing fashion, the triples stored in D are used for
training the policy π which maps from the states
to the actions desired by the teacher. Since π(a|s)
computes the probability of choosing any action a
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given the state s, the method computes the tar-
get probability label based on the action a and the
human evaluation h recorded in each triple.

If an action is either rewarded or explicitly
demonstrated, the method will increase the prob-
ability of choosing that action, but if the action
is punished by the teacher, the probability of
choosing it will be decreased.

Positive evaluations: If h = 1, the vector
of labels used for training the policy is a one-hot
encoding, wherein the action with the high value
is the one that was either demonstrated explicitly
by the teacher, or the one that the robot executed,
and the teacher rewarded positively. This label
increases the predicted probability of that action
in the policy.

Negative evaluations: If h = −1, the label
for all the actions could be set to zeros, which
would mean that all actions are equally not desir-
able, including the ones not punished. However,
doing that is a loss of information conveyed by
the teacher, who implicitly means that “the action
punished is less desirable than some others”, there-
fore, the probability of choosing this action should
decrease more with respect to the others. Hence,
it is proposed to set the target vector as a one-
cold encoding that has the low value for the action
that the teacher has punished. This decreases the
probability of the punished action, while slightly
increasing it for all the others.

Label generation: From every triple (s, a, h)
in D, an input-output tuple (s, li) is created
for the supervised learning process, wherein
[l0, l1, . . . , li, . . . , lC ] is the vector of labels for the
C possible actions, which are the components of
the output of the policy.

li = L(ai, a, h) =

{
1{ai = a}, if h = 1

1{ai 6= a}, if h = −1
(1)

This approach for label generation is convenient,
especially for some kinds of teachers who tend
to only punish wrong behaviors, while passively
observing the good transitions, forgetting to rein-
force behaviors with positive feedback. In this
case, the actions that receive the least amount of
punishments are the ones which the policy would
assign the highest probability, i.e., this even allows
to train a policy only using negative rewards that

force the agent to try other actions, until the right
one is found.

Loss function: Non-one-hot encoding is used
for multi-label classification problems minimizing
the sum of multiple Binary Cross-Entropy (BCE)
loss functions. However, multi-label classification
can consider and make decisions that are not com-
patible with the MDP framework, for instance,
deciding on more than one action or none. In
sequential decision-making problems, the policy is
expected to decide on only one preferred action
for every state. Accordingly, despite some of the
L vectors not being a one-hot encoding, we pro-
pose to approach this problem as a multi-class
classification using a Categorical Cross-Entropy
(CCE) loss, which additionally has the advantage
of normalizing the output of the policy that can
be interpreted as probabilities

CCE = −
C∑
i

L(ai, a, h) log(π(ai|s)). (2)

The softmax activation function is used to com-
pute π(ai|s). Nevertheless, in preliminary exper-
iments, we found that training in a multi-label
scheme with BCE loss, or even using Mean Square
Error (MSE) obtains very similar results, although
that is not the focus of the paper.

3.2 Epistemic and Aleatoric
Uncertainty Estimation

In order to improve the engagement of the teacher
with the learning process, ICREATe is endowed
with the capability of actively letting the teacher
know when it needs more data to improve its
knowledge base. Due to different factors, teach-
ers’ concentration and attention to the agent can
decrease over time.

During the learning process, it is not always
necessary that the teacher is completely focused
on the task execution, especially when the policy
has improved its initial performance. Indeed, when
the agent starts to perform well most of the time,
teachers tend to get distracted because mistakes
are not expected anymore. Therefore, query gen-
eration based on policy uncertainty is a convenient
strategy for increasing the teacher’s attention
when it is more necessary. Both types of uncer-
tainty are modeled independently as introduced
below.
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3.2.1 Modelling Epistemic Uncertainty

As implemented in previous works, we propose
to use ensembles of NNs for capturing the uncer-
tainty of the policy model [27, 30]. These models
are composed of multiple NNs or heads of a NN,
that are trained to predict the same output in each
of them, given a specific input.

After training those models, ideally, all the
outputs should agree with a similar prediction for
the data used during training and the surround-
ing neighborhood, while the predictions of unseen
states tend to have a high disagreement (variance).
Additionally, the disagreement of the individual
predictors of an ensemble has a positive impact on
the ensemble generalization error [40].

The disagreement of the components of an
ensemble is the lower bound of the weighted aver-
age of the errors of the components [41]. This
means that if an ensemble predicts high dis-
agreement for a specific state, it would obtain
a high average error. This would only happen
when that state is not similar to any sample of
demonstrations used for training, and therefore
the disagreement can be interpreted as a measure
of lack of confidence or uncertainty in the predic-
tion of the policy, because more demonstrations
are required for that situation.

In order to make an ensemble work well for
predicting high variance for unseen states, there
are some strategies that ensure that each of the
heads of the NN is not trained exactly as a copy
of the others, but rather generalizing in different
ways while fitting the training data. Each of the
components of the ensemble has a different struc-
ture that can be obtained with simple strategies
like:

• Setting different depths for each component.
• Setting different widths for each component.
• Allocating different random batches for com-

puting the updates of each component.
• Training under-regularized models.
• We also found it useful to randomly initialize

the weights, forcing each output to start in dif-
ferent ranges, such that the initial predictions
have a uniform distribution.

Although the action prediction of the policy
and the epistemic uncertainty are both computed
with the outputs of the ensemble, we simply name
π(s) the function that computes the arg max of

the average of the ensemble πE ,

π(s) = arg max
ai

K∑
k

wkπE,k(ai|s) (3)

where K is the number of individual predictors or
heads of the ensemble, and wk are optional param-
eters that are proportional to the performance of
each head that are used for a weighted average of
the outputs. The epistemic uncertainty is obtained
with the function G(s) that computes the variance
of the ensemble ue = G(s). Each of the heads of
the ensemble πE,k is trained optimizing the cost
function (2)

3.2.2 Modeling Aleatoric Uncertainty

In order to detect the noisy samples in the gath-
ered data, which creates conflicts or ambiguities
during training, we propose to train a predic-
tive model A(s) that computes the probability of
the policy predicting a mistake. This measure is
inspired by the training of models for residuals
prediction, which predict the error of the actual
model (policy), with respect to the state. How-
ever, our interest is not to be able to predict the
error of the policy, but rather to detect the states
in which the policy has a prediction error.

The assumption is that the policy model
is expressive enough to be able to imitate all
the demonstrated actions after enough training,
and only when there are conflicting/ambiguous
demonstrations, the policy will have issues pre-
dicting the demonstrated action for the inputs of
the demonstrations involved in the conflict.

For instance, if the teacher demonstrated two
or N different actions for the same state s, the
policy will be able to predict the action that is
correct at most for one of those demonstrations,
while not imitating correctly at least one or N −1
cases respectively. In other words, we propose that
the aleatoric uncertainty (ua = A(s)) is indirectly
measured based on the probability of predictive
mistakes of the policy that are produced due to
the ambiguous demonstrations and that cannot be
solved with more training, but with more feed-
back that reinforces one of the possible actions,
reducing the average error for that state.

The ideal prediction assumption is not always
realistic, especially at the beginning of the learn-
ing process, when the model is not fitting all the
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training data. Nevertheless, the prediction of mis-
takes in non-ambiguous states is not a negative
feature, but rather a good side effect that helps to
request feedback in states that need to be empha-
sized because the demonstrated data is not being
imitated yet. For training this model A(s), the
update procedure is performed subsequently after
the update of π(s).

Predicting mistakes when only learn-
ing from corrective demonstrations: For each
demonstrated tuple (s, a) in the update batch, the
target m (for the model A(s)) for the input s is
computed as

m = M(s, a) = 1{d(a, π(s)) > ε}, (4)

where d(·) is a measure of distance/similarity and
ε is the threshold defining whether two actions are
similar or not, depending on the domain of the
actions. For the case of discrete actions, the target
of the tuple (s,m) can be computed as

m = M(s, a) = 1{a 6= π(s)}. (5)

Predicting mistakes when learning from
corrective and evaluative feedback: For this
more general case approached in this paper with
the proposed method, the generation of the output
label of A(s) is slightly more complex since there
are samples of undesirable state-action pairs, i.e.,
when h = −1. The variation of M in (6) takes
the triple (s, a, h) to compute the output m =
M(s, a, h) associated to the input s, conditioning
it with the evaluative feedback h.

m =

{
1{a 6= π(s)}, if h = 1

1{a = π(s)}, if h = −1
(6)

Loss function: This supervised learning prob-
lem is trained optimizing the BCE loss computed
with:

BCE = −M(s, a, h) log(A(s))

− (1−M(s, a, h)) log(1−A(s))
(7)

3.2.3 Network Architecture

We propose to implement one big network as pre-
sented in Figure 2, that includes the ensemble
for computing the policy π(s) and the epistemic

head 1                             head 2          …                          head k

Aleatoric Uncertainty Estimation

8

Hidden layer

Output

  Action          Epistemic Uncertainty    

Output

       Aleatoric Uncertainty

  State    

Fig. 2 Network architecture for predicting actions, along
with the epistemic and aleatoric uncertainties.

uncertainty with G(s), along with the mistake pre-
diction model A(s). It has a hidden layer (in gray)
after the input layer, which is common and con-
nected to all the heads of the network, including
the branch for computing A(s) (in green). This is
with the purpose of sharing the first set of fea-
ture extraction such that not everything is learned
completely independently and the process is more
data efficient.

The layers of the policy ensemble are in blue,
and each of the heads has a soft-max activation
in the layer connected to the Output layer, such
that for each head the cost (2) can be minimized
independently. The last blue Output layer is for
computing the variance of the ensemble G(s) and
the average of (3) for π(s).

The green head contains the layers for com-
puting A(s), and its output layer has a sigmoid
activation function required for computing the
binary cross-entropy loss (7).

3.3 Passive rewarding under
uncertainty

Teachers do not tend to perform corrective demon-
strations or provide positive rewards all the time
when the agent is executing the right actions.
There are situations in which there were ambigu-
ous demonstrations but the action predicted by
the policy is considered satisfying by the teacher,
or unseen situations with high epistemic uncer-
tainty in which the actual prediction is also the
desired action.

For those cases, some teachers would decide to
not always provide a feedback signal, especially
after a reasonable training time, even though there
is a query/alert triggered by high uncertainty esti-
mations. The results of [42] support the hypothesis
of considering silence as positive feedback.
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We propose to generate more training data
even without the active intervention of the
teacher, leveraging the aforementioned assump-
tion. Since the teacher is aware of the low con-
fidence of the policy due to the active queries,
we assume that the lack of teacher interventions
with either corrective demonstrations or punish-
ments could be taken as an implicit acceptance or
approval of the current executed behavior, unless
the teacher lets the agent know that she/he will
not provide feedback. Therefore, the state-action
pairs of these situations are considered for this
passive rewarding and aggregated to the dataset
with a reinforcement h = 1.

Nevertheless, it is proposed not to passively
reward every time step there is a query and the
teacher does not intervene. Rather, it is taken into
account that teachers could have a slow reaction
to new events, and hence, a grace period should
be considered before the passive rewarding. In [43]
this response time has been modeled with proba-
bility distributions P (t) that explain how long it
takes for a person to react to different tasks, or the
probability of having a reaction after t seconds of
the event.

In order to make sure the algorithm does
not passively reward state-action pairs before the
probabilities of response are reduced significantly,
the grace period is calculated from those models
finding the time in which there is only 5% left of
probabilities of response, i.e., using (8) to find tg.∫ tg

0

P (x) dx = 0.95 (8)

In [14] an example of this response time is shown,
wherein P (t) ∼ Gamma(2, 0.28), and finding tg
from (8) is approximately 1.3s, which matches the
experimental results presented in [43]. Thus, the
passive rewarding is performed only when there
are continuous queries from the agent for more
than tg seconds without teacher intervention,
unless the teacher disables it with:

• A signal that sets the teacher interaction on
hold. This is useful for allowing the teacher to
perform another task, as long as the system does
not have any safety-related risk.

• A signal that states the teacher does not know
whether the robot execution is right in the
current time steps.

The passive rewarding continues every time step
after tg as long as the conditions do not change,
otherwise, it is interrupted and the time counter
would be restarted when those conditions are
fulfilled again.

3.4 Complete ICREATe algorithm

The integration of these components considering
the two interaction modes, the use of both uncer-
tainty estimations for active learning, and the pas-
sive rewarding component is presented in Alg. 3.
The parameters θ and φ comprise the networks of
the policy ensemble and the aleatoric uncertainty
model respectively, therefore the implementation
of the parameterized functions are named πθ, Gθ,
and Aφ.

For every episode, in every time step, the pol-
icy and uncertainty models are evaluated in (st)
(lines 6-8). In order to generate active queries,
the uncertainties ue and ua are compared to the
thresholds the and tha respectively, and if True,
the function env.queryFeedbackAlert() is used to
communicate the query to the teacher through the
user interface (lines 9-14).

If the teacher decides to intervene with a cor-
rective demonstration (line 15), the action ah
demonstrated by the teacher with the user inter-
face replaces the current action of the policy at
(line 16), and it is used with the default rein-
forcement (line 17) to be aggregated to D (line
18). If the user decides to intervene with evalu-
ative feedback, the function humanEvaluation()
obtains the reward or punishment from the user
interface (line 21), it is aggregated to D (line 22).
Then the action at is executed by the agent (line
24).

The passive rewarding is computed (lines 25-
28), if all the requirements discussed in Section
3.3 are fulfilled. In line 25,“not feedback” means
that neither a corrective nor evaluative feedback
has been provided by the teacher.

Finally, the policy is updated every b time
steps. At the end of every episode, both πθ (implic-
itly Gθ) and Aφ are updated with loss functions
(2) and (7) respectively. This algorithm can be
seen as a generalization of some other methods
that can be derived from ablations of Alg. 3. For
instance, HG-DAgger is obtained if only running
the lines 1-7, 12-19, 24, and 33. Deep TAMER
would be only with lines 1, 3-6, 20-24, and 29-33
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Algorithm 3 Learning with corrective and eval-
uative feedback, and queries based on epistemic
and aleatoric uncertainty.

1: Initialize πθ and Aφ networks
2: Allocate buffer D
3: for episodes do
4: while not done do
5: Visit state st
6: at ← πθ(st)
7: ue ← Gθ(st)
8: ua ← Aφ(st)
9: if ua > tha then

10: env.queryFeedbackAlert()
11: end if
12: if ue > the then
13: env.queryFeedbackAlert()
14: end if
15: if Corrective feedback then
16: at ← ah
17: h← 1
18: Aggregate (st, at, h) to experience

buffer D
19: end if
20: if Evaluative feedback then
21: h← humanEvaluation()
22: Aggregate (st−1, at−1, h) to expe-

rience buffer D
23: end if
24: st+1, done← env.step(at)
25: if during tg: (not feedback) and (ue >

the or ua > tha) then
26: h← 1
27: Aggregate (st, at, h) to experience

buffer D
28: end if
29: if mod(t, b) is 0 then
30: Update πθ with batch from D
31: end if
32: end while
33: Update πθ with batch from D
34: Update Aφ with batch from D
35: end for

along with removing the softmax activation func-
tion layer. The source code of this method will be
published along with this paper.

4 Experiments and Results

In order to evaluate ICREATe, in the experiments,
it was considered both simulation and real robot
setups, along with evaluations including real and
simulated teachers.

4.1 Experimental setup

The evaluation of ICREATE was planned sequen-
tially, first taking the most exhaustive comparison
using simulated teachers or oracles to replace the
human in the loop, then running a user study with
a simulated environment, and finally a validation
with tasks with a real KUKA iiwa robot arm.

4.1.1 Simulated environments with
simulated teachers

For simplicity, the most exhaustive experiments
are carried out with simulated environments since
they do not have physical constraints, like the
duration of the experiment (that cannot be accel-
erated with computational power), or the safety
of the system itself and the users around.

Environments:

Four different OpenAi Gym [44] environments
were chosen for these evaluations, considering dif-
ferent complexities with low, intermediate, and
high dimensional state spaces. For a low dimen-
sional problem, the CartPole environment is used,
which has a very simple state space of four dimen-
sions. With an intermediate dimensionality, the
atari games Skiing and Pong are used, specifi-
cally the environments using the RAM memory as
observation vector with a length of 128, which is
not a so high dimensional observation, but still,
a complex representation from which it is diffi-
cult to obtain good features extraction, i.e., it is
a representation that requires smaller NNs and
less computational resources with respect to using
images as observations, but in some cases, it is less
efficient to decode the relevant information than
when learning with pixels in the observations. For
high-dimensional observations, the Enduro envi-
ronment with screen images as observation is used,
and the last four frames are considered within the
current observation. Figure 3 shows screenshots of
the chosen Gym environments.
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Interface
Fig. 3 Simulated environments used for experiments.

Simulated teachers:

In order to evaluate and compare different meth-
ods without biasing the experiments with human
factors like tiredness or loss of concentration after
many repetitions of many different tested meth-
ods, or the influence of the order of the used
teaching methods, a simulated teacher based on
an expert policy is implemented. It is able to per-
form many learning processes consistently without
external human factors allowing to purely evaluate
the algorithmic potential – measuring how each
algorithm is able to make the learner imitate the
teacher, based on the velocity of convergence and
final performance.

Depending on the task, the oracle is set to pro-
vide feedback to the learner on a fixed percentage
of time steps, based on preliminary experiments.
For each task, it was measured what percentage of
time steps an expert teacher gives feedback, and
additionally how many episodes of feedback are
required for the oracle to provide feedback to the
agent, such that the learning agent reaches a good
performance. The rate of feedback and the number
of episodes with feedback are fixed for each envi-
ronment, for running all the experiments under
similar conditions.

In the case of passive learners, the simulated
teacher provides feedback randomly with the pre-
defined rate of feedback, whereas for the active
learners the random feedback is controlled in
order to compensate for the number of time steps
wherein the learner requested feedback. In the
cases of using both corrections and evaluations,
the probabilities of providing either is set arbitrar-
ily to 50%. For the corrections, the expert policy
is evaluated in the visited state st, and using it as
ah. While for evaluative feedback, the reinforce-
ment is obtained as in (9), comparing at computed
with the current policy πθ(st) to the action ah

computed by the oracle.

h =

{
1, if ah = πθ(st)

−1, if ah 6= πθ(st)
(9)

Since the interest of this work is in Interac-
tive Imitation Learning approaches that can deal
with ambiguous or noisy human feedback, all the
experiments with simulated teachers incorporate
simulated mistakes in the feedback. Actually, the
mistakes are a variable that cannot be controlled
or observed in experiments with real users, there-
fore the robustness of the methods to that factor
is only studied in this set of experiments with
oracles.

For all the experiments, the percentage of mis-
takes is set to 40%, which means that 40% of
the time steps the oracle intervenes, it provides
wrong feedback. In the case of a correction, it
selects a random action out of the set of actions
excluding the right one, whereas in the case of
evaluations it provides a reinforcement contrary to
(9). This rate of mistakes is very high since almost
half of the interventions of the teacher are wrong.
This high rate of mistakes is intended to assess
how the use of aleatoric uncertainty-based queries
improves the robustness of the learning process.

Ablations

For comparison purposes, ICREATe and many
ablations of it which match other state-of-the-
art interactive methods like HG-DAgger [30], and
deep TAMER [23] were evaluated, along with vari-
ations/extensions of them, considering additional
features like the active learning components and
updates during/after episodes. Also, the CEILing
method [34], which combines corrective and eval-
uative feedback was included in the experiments.

The generated algorithms and ablations
employ (or not) the following different algorithmic
features:

• AQ: Active queries based on aleatoric uncer-
tainty.

• EQ: Active queries based on epistemic uncer-
tainty.

• Episodic update: The policy only updates
every episode, otherwise every b time steps (b =
1 in the implementation).

• Passive reward: Use of the passive rewarding
under uncertainty assumption.
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• Corrections: Use of corrective feedback.
• Evaluations: Use of evaluative reinforcements.

The last two could be considered algorithmic
or oracle variables. Additionally, there is another
considered feature that is not based on an algo-
rithmic variable, but on the implementation of the
oracle, i.e., this feature does not generate more
variations of algorithms. This feature considers
to reduce the rate of mistakes of the oracle to
zero in time steps where the agent queries feed-
back. It is based on the assumption that a human
teacher might do fewer mistakes whenever the
agent requests feedback, because it improves the
engagement of the user.

At the beginning of the learning process, most
of the queries are due to epistemic uncertainty
since most of the state space is unseen, i.e., there
are not many collected labels yet. And since
there are not many labels, it is unlikely there
are many ambiguous/conflicting labels that gener-
ate aleatoric uncertainty-based queries. Therefore,
we consider this variation only for the algo-
rithms using queries based on aleatoric uncer-
tainty, because those are the queries that keep
being triggered in the long term during late
episodes. That is, when the user might be tired
and could get more distracted, and therefore,
queries can have more influence (queries may not
have a considerable impact at the beginning when
the teachers are still focused).

The assumption of teachers not making mis-
takes because there is a query is not very strong,
because users could still get confused or change
their minds after a query. Nevertheless, couples of
ablations that share the same features and differ
only in the mistakes-related feature can provide a
rough estimate of upper and lower bounds for the
range wherein a real user could perform.

With all the seven features that can be con-
sidered (or not), 128 different variations could be
generated, although a few of them do not make
sense to be implemented. There still is an unfea-
sibly high number of possible experiments that
could be carried out. Therefore, for simplifying
the experiments to a doable and reportable scale,
only the variations that are closer to the origi-
nal algorithms are selected, as reported in Section
4.2.1.

4.1.2 User Study

Unlike other non-interactive machine learning
methods, the evaluation of human-in-the-loop
approaches requires not only to assess the capa-
bility to converge to successful results, but also
the impact they have on the user experience.
To complement the objective measures that can
be obtained with the simulated teachers’ experi-
ments, a user study that collects subjective mea-
sures is carried out in order to observe how
variations of the proposed method improve the
experience of the users.

In previous studies, it has been shown that
users tend to prefer teaching by showing what
to do rather than evaluating what the learner
is doing. Hence, user studies for comparisons of
learning with different kinds of feedback are not
going to obtain very new conclusions. The focus is
rather on evaluating the use of both uncertainties
for active learning. Five different variations of the
proposed learning approach are used in this study,
in all cases, users can teach with both evaluative
and corrective feedback. The evaluated systems
feature:

• PL: Passive Learning, no use of queries.
• EQ: Queries based on epistemic uncertainty.
• AQ: Queries based on aleatoric uncertainty.
• EAQ: Queries based on epistemic and aleatoric

uncertainty.
• EAQPR: Queries based on epistemic and

aleatoric uncertainty, along with the passive
rewarding strategy.

The participants of the experiments were
requested to answer simple and short questions
from well-known questionnaires for assessing user
experience. They completed the System Usabil-
ity Scale (SUS) questionnaire [45], which obtains
a score of usability for each of the systems, along
with the NASA-TLX [46] that measures the per-
ceived workload of the systems (in this case the
raw TLX [47] is used), and the system acceptance
scale [48], which measures scores for usefulness
and satisfaction of the system.

Additionally to these subjective measures, the
final average performance of the obtained policies
and the amount of feedback the teachers provide
to the learning agent is also collected from the
learning processes. This count of human correc-
tions and reinforcements is presented raw instead
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Fig. 4 Interface for the user study.

of as a percentage of time steps. The reason is that
policies with a lower performance result in a longer
episode duration in the Skiing environment, there-
fore a low percentage could hide a high amount of
interactions in long episodes.

For the experiment, the previously introduced
Skiing game from Atari is used, since, in our obser-
vations, it is a difficult learning challenge that
can get a lot of progress within a short period of
time. Something that is important for not losing
the motivation of the participants. Additionally,
this environment is a good motivation for IIL as
the literature shows that it is very difficult for RL
algorithms, which obtain poor results in general,
given the sparsity of its environmental reward,
whereas it is more direct to learn from the insights
shared by a human teacher.

In the experiments, the participants listen to
the guidelines and the instructions to follow, then
they are given five minutes to play with the envi-
ronment. The order of the system they interact
with is chosen randomly for each participant.
They train the agent for ten minutes with every
system, and then immediately proceed to answer
the questionnaires after interacting with each of
them.

The participants sit in front of a computer
wherein they observe the game on the screen
while providing feedback through a keyboard as
depicted in Figure 4. Beside the screen of the
game, there is a dark empty window that displays
a smiley any time the system is querying feedback.

In these experiments, the participants did not
have any technical background in robotics and/or
machine learning, featuring 8 men and 6 women,
whose ages ranged between 24 and 55. The pro-
tocols of these experiments were evaluated and
approved by the Human Research Ethics Com-
mittee of TU Delft. The participants signed an
informed consent for joining this experiment.

4.1.3 Real robot environments

A validation of ICREATe in a physical robotic sys-
tem is carried out with a KUKA iiwa 7 robot arm,
with four different manipulation tasks introduced
below and whose setups are shown in the Figure 5.

Box pushing: The robot has to push a box
to be placed beside the box on the left side of
the table, with the same orientation. The box is
initially located with a random pose on the right
side of the table. The episode finishes successfully
if the box reaches the desired pose, otherwise, it
is terminated unsuccessfully after 2 minutes. The
objective function is the success rate.

Goalkeeper: The robot moves on a straight
line (from the left to the right side of the table
in Figure 5 ) in order to intercept an object that
moves towards this line (from bottom to top). The
object starts the episode (at the bottom) with
a random position and orientation, if it crosses
the line of movement of the robot, it is consid-
ered a failed episode (goal), otherwise, a successful
one when the robot intercepts the object. The
objective function is the success rate.

Pendulum stopping 1D: A Ball is attached
to the robot end-effector with a rope, and the
objective is to move the robot such that it compen-
sates for the swing of the ball, reducing its velocity
to almost completely stop the swing. At the begin-
ning of the episode, the ball is placed higher than
the end-effector and let fall free to start swinging.
The ball swings through the same straight line in
which the robot moves (from left to right). The
objective function is the negative of the time the
robot takes to stop the pendulum (a threshold of
minimum velocity is assumed for considering the
pendulum to be stopped).

Pendulum stopping 2D: The task is similar
to the previous one, but in this case, the robot
moves in a horizontal plane, and the ball is pushed
to swing in circles.

For all the tasks, the actions are the change
of position of the robot end-effector, whereas the
states are composed of the positions and veloci-
ties of both the end-effector and the manipulated
object. For the box pushing task also the orienta-
tion of the box is considered.

In these setups, the states are obtained from
the internal sensors of the robot and an OptiTrack
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Fig. 5 Setups for the validation with a physical robot.

motion capture system. The interface for provid-
ing feedback to the agent is a gamepad and the
participant of the experiment is an expert teacher.

4.2 Results

4.2.1 Experiments with simulated
teachers

As mentioned in Section 4.1.1, it is not possi-
ble to experiment with all the possible ablations
and methods, therefore, the most meaningful ones
were implemented, and from those, only the most
interesting results are reported. The results of
the learning convergence are summarized with
the final performance of the policies, and the
approximate number of episodes required for that
convergence. Some ablations are considered a vari-
ation of an original algorithm if there is a change
in the algorithmic variables, and not in the imple-
mentation of the oracle.

All the evaluated cases of ICREATe were
tested in couples considering both mistakes and
no mistakes during AQ. Additionally, almost all
its variations were tested with the oracle: i) pro-
viding 50% of corrections and 50% of evaluations,
and ii) providing 100% of corrections and no eval-
uations. The latter is to observe the performance
when using the most efficient feedback mode, in
terms of data efficiency, the best case scenario.

In the case of the CartPole results in Table
1, first, it is observed that none of the passive
learners could get a relative progress in the learn-
ing process. The full ICREATe method was tested
(results in rows 15-18 of Table 1), and two varia-
tions of it were also evaluated. The first variation

(ICREATe V.1 in rows 9-12), did not include the
passive rewarding assumption, obtaining a perfor-
mance reduction between approximately 3− 30%
with respect to the full method. The second varia-
tion (ICREATe V.2 in rows 13-14), did not include
passive rewarding, and additionally updated the
policy every time step. This variation decreased
the learning policy performance even more, reduc-
ing it between 4 − 10% with respect to ICREAte
V.1 (the corresponding cases in rows 9-10), and
13−39% with respect to the full method (the cor-
responding cases in rows 15-16). Because of these
results, the second variation was not evaluated
for the cases with 100% corrective feedback. It
is interesting to notice that with the full ICRE-
ATe and only using corrective demonstrations, the
performance was slightly decreased with respect
to also using evaluative feedback, being in both
cases close to the optimal performance. In general,
ICREATe outperformed D-TAMER, HG-DAgger,
Ceiling, their variations, and the ablations of
ICREATe itself, confirming that all the compo-
nents of the method have a contribution in the
improvement.

Five variations of D-TAMER were tested
along the original, observing that unlike data
aggregation schemes, D-TAMER performs bet-
ter when the update is more often during the
episode and not only at the end. As expected,
having both uncertainties for active learning in
this method obtained the highest performance.
The original HG-DAgger along a variation that
updates the policy every time step were tested
(rows 7-8), showing that data aggregation meth-
ods collect better data and converge better when
using episodic updates (as seen with ICREATe
V.1 vs V.2). Finally, CEILing was tested twice,
with “CEILing 3x” receiving oracle feedback three
times more often than in the rest of the tested
algorithms. However, increasing the amount of
feedback had a slight effect. In general CEIL-
ing showed to be very sensitive to the simulated
mistaken feedback.

For the environments of Skiing, Pong, and
Enduro, only the most relevant cases from the
experiments of CartPole are presented in their
respective tables 2 to 4. The same trends in these
experiments can be observed, noticing that in
these cases unlike in CartPole, there is always
a positive and higher improvement when using
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only corrective demonstrations than when com-
bining both feedback types. This is more notice-
able because in these problems the action space
dimensionality is higher, therefore the difference
in the amount of information contained in a cor-
rective demonstration compared to an evaluative
reinforcement is also higher.

Uncertainty evolution: As mentioned in
Section 4.1.1, the epistemic uncertainty is high
at the beginning of the learning process because
there is not enough data to describe all the pos-
sible situations, but it decreases over time, with
more data collection. Whereas the aleatoric uncer-
tainty is null at the beginning and starts to
increase when more and more noisy data is col-
lected, as in this case – because we know the
collected data has a high rate of mistakes.

Although it was mentioned that aleatoric
uncertainty is not eliminated with more data
(Section 2.3), with the proposed strategy of pre-
dicting mistakes (Section 3.2.2), the queries based
on this uncertainty could actively obtain more
data that unbalances the prediction towards the
most demonstrated action out of the set of con-
tradictory feedback related to a specific state.
Therefore, the average prediction error of that
state is reduced, and then it could be considered
more certain.

Figure 6 shows how the uncertain states ratio
evolves through the episodes while learning in the
CartPole environment. Both cases with mistakes
and no mistakes during aleatoric uncertainty-
based queries are depicted. The Epistemic uncer-
tainty is reduced in both cases as expected, while
the aleatoric uncertainty increases after some feed-
back is collected, but is reduced later on with the
data collected via active queries, especially if the
response to the queries is less noisy (or not noisy
in the case of “no mistakes in AQ”).

However, even though the teacher does not
reduce the rate of mistakes during any query,
the active queries can help to improve the bal-
ance of the contradictory data. For instance, as in
the case of these simulated teacher experiments,
if the teacher gives noisy feedback 40% of the
time, 40% of the state space can have obtained
contradictory feedback, while the remaining 60%
has correct demonstrations. Then, there will be
aleatoric uncertainty-based queries in 40% of the
states, wherein the teacher again will provide 60%
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Fig. 6 Evolution of the uncertain states ratio through the
learning process.

of correct feedback, i.e., 24% (60% of the 40%)
would have contradictory samples that are biassed
towards the right demonstration, while only 16%
of the states (40% of the 40%) would remain
receiving incorrect feedback, reducing the balance
towards incorrect demonstrations that otherwise
would be 40% without active learning.

4.2.2 User study

After running the user study, the average of all
the subjective scores along with the objective mea-
sures are introduced in Table 5. The SUS score
ranges from 0 to 100, while the Usefulness and
Satisfaction scores of the Acceptance scale range
between -2 an 2. In both cases, a higher score
means a better experience for the user, at least in
the domain the score intends to measure. In the
case of the TLX questions, the scores also range
from 0 to 100, however high values are related to
high workloads of the evaluated systems, and it is
desirable to have them as low as possible.

The SUS score is in a similar range for all
the evaluated cases, where the variations AQ,
EAQ, and EAQPR got the highest score, i.e., all
the cases using aleatoric uncertainty-based queries
scored slightly more usable than only using epis-
temic uncertainty or no queries at all. In the
results of the acceptance scale, the Usefulness
scale shows a similar trend, having the systems
using aleatoric uncertainty queries rating as the
most useful (matching the 2 usefulness measures),
however, in this case, the passive learners rated
way lower, while the systems using only epistemic
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Table 1 Results of the simulated teacher experiments with the CartPole environment.

Algorithmic Variable
Algorithmic or
Oracle Variable

Oracle
Variable

Convergence

# Method AQ EQ
episodic
update

passive
reward

corrections evaluations
no mistakes

in AQ
Return Episodes

1 D-TAMER n/a n/a n/a n/a n/a x n/a 24.4 175
2 D-TAMER V.1 x n/a n/a x n/a 19.25 85
3 D-TAMER V.2 x n/a n/a x n/a 82.7 170
4 D-TAMER V.3 x x n/a n/a x x 169.45 145
5 D-TAMER V.4 x x n/a n/a x 98.15 175
6 D-TAMER V.5 x x x n/a n/a x x 111.05 135
7 HG-DAgger n/a x x n/a x n/a n/a 107.6 175
8 HG-DAgger V.1 n/a x n/a x n/a n/a 83 135
9 ICREATe V.1 x x x x x x 193.85 75
10 ICREATe V.1 x x x x x 122.9 135
11 ICREATe V.1 x x x x x 198.15 40
12 ICREATe V.1 x x x x 129.3 165
13 ICREATe V.2 x x x x x 173.6 125
14 ICREATe V.2 x x x x 114.75 165
15 ICREATe x x x x x x x 199.5 30
16 ICREATe x x x x x x 193 105
17 ICREATe x x x x x x 196.5 40
18 ICREATe x x x x x 188.65 175
19 CEILing n/a n/a n/a n/a x x n/a 17.85 25
20 CEILing 3x n/a n/a n/a n/a x x n/a 19.7 15

Table 2 Results of the simulated teacher experiments with the Skiing environment.

Algorithmic Variable
Algorithmic or
Oracle Variable

Oracle
Variable

Convergence

# Method AQ EQ
episodic
update

passive
reward

corrections evaluations
no mistakes

in AQ
Return Episodes

1 D-TAMER n/a n/a n/a n/a n/a x n/a -11364.25 60
2 HG-DAgger n/a x x n/a x n/a -9539.7 35
3 ICREATe V.1 x x x x x x -10200 45
4 ICREATe V.1 x x x x x -10354.5 55
5 ICREATe V.1 x x x x x -8324.7 70
6 ICREATe V.1 x x x x -8609.3 70
7 ICREATe x x x x x x x -6178.8 45
8 ICREATe x x x x x x -9307.75 55
9 ICREATe x x x x x x -5417.4 40
10 ICREATe x x x x x -6622.6 70
11 CEILing n/a n/a n/a n/a x x n/a -28179.85 3
12 CEILing 3x n/a n/a n/a n/a x x n/a -27172.5 40

queries seem to be more useful than the pas-
sive learners, but not as much as the ones using
the aleatoric uncertainty. The satisfaction scale
shows again that active learners get better results,
especially if they use the aleatoric uncertainty,
although participants found that combining both
uncertainties is slightly more irritating than only
using queries in situations of ambiguity (as with
AQ).

The results of the raw TLX questionnaire
(without merging each question rate into one uni-
fied score) show a similar trend, having the passive
learner with the highest workload, followed by
the active learner EQ (only epistemic), and the
ablations incorporating the aleatoric uncertain-
ties being the least demanding. Only the physical
demand was a point not providing any informa-
tion because each of the participants rated all the

ablations with a very similar rate, having variance
only between participants. This result is expected
since the physical activity is limited to moving a
few fingers, and it is the same for all the cases.

In general, the use of positive rewarding did
not show a major impact on the subjective mea-
sures of usefulness and workload, however, it did
have an impact on the convergence of the learning
process, with improvement of the policy perfor-
mance and reduction of the number of interactions
the participants had to do. Since the participants
were not observing the score the agent obtains at
the end of the episode (it is not printed by the
environment on the screen as in other games) they
could perceive only large policy improvements.
Therefore, the lack of perception of improvement
the passive rewarding obtains in the final perfor-
mance, as it could be seen comparing EAQPR
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Table 3 Results of the simulated teacher experiments with the Pong environment.

Algorithmic Variable
Algorithmic or
Oracle Variable

Oracle
Variable

Convergence

# Method AQ EQ
episodic
update

passive
reward

corrections evaluations
no mistakes

in AQ
Return Episodes

1 D-TAMER n/a n/a n/a n/a n/a x n/a -16.6 120
2 HG-DAgger n/a x x n/a x n/a 4.8 130
3 ICREATe V.1 x x x x x x 8.15 120
4 ICREATe V.1 x x x x x 5.5 135
5 ICREATe V.1 x x x x x 13.85 105
6 ICREATe V.1 x x x x 12.45 115
7 ICREATe x x x x x x x 7.6 135
8 ICREATe x x x x x x 4.9 110
9 ICREATe x x x x x x 15.2 65
10 ICREATe x x x x x 16.4 90
11 CEILing n/a n/a n/a n/a x x n/a -17.65 100
12 CEILing 3x n/a n/a n/a n/a x x n/a -13.25 115

Table 4 Results of the simulated teacher experiments with the Enduro environment.

Algorithmic Variable
Algorithmic or
Oracle Variable

Oracle
Variable

Convergence

# Method AQ EQ
episodic
update

passive
reward

corrections evaluations
no mistakes

in AQ
Return Episodes

1 D-TAMER n/a n/a n/a n/a n/a x n/a 25.4 75
2 HG-DAgger n/a x x n/a x n/a 79.3 45
3 ICREATe V.1 x x x x x x 52.2 120
4 ICREATe V.1 x x x x x 46.8 85
5 ICREATe V.1 x x x x x 93.3 115
6 ICREATe V.1 x x x x 84.9 55
7 ICREATe x x x x x x x 69.1 100
8 ICREATe x x x x x x 57.7 80
9 ICREATe x x x x x x 114.2 105
10 ICREATe x x x x x 99.5 120
11 CEILing n/a n/a n/a n/a x x n/a 11.4 55
12 CEILing 3x n/a n/a n/a n/a x x n/a 36.9 80

with EAQ, has its influence on the subjective
scores.

However, in the satisfaction scale, it can
be seen that the passive rewarding in EAQPR
obtained an increment of 16% with respect to
not using it (EAQ). Although these two abla-
tions did not get the highest satisfaction, as it was
mentioned before.

4.2.3 Results in real robot
environments

The tasks used for validating ICREATe with the
real robot, feature low dimensional state spaces,
but not so simple dynamics, which are even fast
for human teachers as in the case of the pen-
dulum stopping tasks. In Figure 7 the learning
curve for these tasks is plotted with normalized
objective functions, depicting that it is possible to
train complex dynamic tasks, with robots in the
physical world within a few minutes using ICRE-
ATe. The simplest task was the goalkeeper since
the interaction of the robot and the object does

not need to be precise, requiring around 20 min-
utes to achieve a good performance. The most
demanding task was the PendulumStopping 2D,
given the required fast reaction of the teacher,
in order to compensate for the fast movements
of the pendulum. The video1 of the paper shows
the performance of these systems during and after
learning.

5 Conclusion

The proposed ICREATe is an IIL method that
is epistemic and aleatoric uncertainty aware, fea-
tures that are convenient for improving the data
that composes the agents’ knowledge base, when
the system is either lacking data, or having con-
tradictory data. Additionally, ICREATe lets the
user teach with evaluative or corrective feedback
according to the user’s preference at any moment
of the learning process. The algorithm smoothly
combines both kinds of feedback to update the

1https://youtu.be/ eS75eusTFQ
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Table 5 Results of User Study.

Ablation PL EQ AQ EAQ EAQPR

Subjective
measures

SUS 83.21 84.82 88.75 88.93 89.82

Acceptance
Scale

Usefulness 0.64 1.19 1.47 1.50 1.51

Satisfaction 0.43 0.66 1.05 0.77 0.89

NASA-TLX

Mental
demand

68.21 58.93 44.64 42.50 41.43

Physiccal
demand

10.36 10.71 10.71 10.36 10.36

Temporal
demand

50.36 35.71 33.21 24.29 26.79

I-Performance 42.50 32.50 27.14 25.00 26.79

Effort 56.79 41.43 36.07 33.93 32.14

Frustration
level

42.86 35.00 29.29 25.71 25.36

Objective
measures

Performance -15387.21 -10872.00 -8553.64 -7752.35 -7034.42

Feedback instances 14472.71 13196.07 12049.29 10431.64 9239.57
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Fig. 7 Evolution of the uncertain states ratio through the
learning process.

policy, and it can even model contradictions across
the two kinds of feedback signals.

The experimental results showed how the
active queries of ICREATe can help to consid-
erably improve the learning performance under
regimes of highly ambiguous teachers, while at
the same time, the user study showed that they
improve the overall teaching experience.

Given that most people take a teacher’s
silence as positive feedback, the proposed method
includes the positive rewarding assumption, which
considers the teacher agreeing with a behavior
when not “complaining”. This is only applied in
situations of active queries because the teacher is
more alert. This strategy allows to gather more
relevant data without further effort.

Since it is known that corrective demonstra-
tions are more informative than evaluations, the

second objective of this paper was not to improve
learning convergence through the combination of
both kinds of feedback, but rather to improve
the interaction flexibility of the teachers. However,
the experiments showed that combining corrective
feedback with implicit positive evaluative feedback
has a positive impact in the data efficiency and
the policy performance.

In general, when applying deep learning strate-
gies for learning from massive amounts of data,
aleatoric uncertainty can have a higher impact on
the learning process [37], however, IIL requires
to collect the samples simultaneously during the
learning process, sometimes starting from empty
datasets, which makes epistemic uncertainty also
relevant. Hence, making use of both uncertain-
ties is a necessary consideration for learning with
humans in the loop, especially when considering
that we are not perfect oracles and we often do
mistakes.

Nevertheless, further research should be car-
ried out for having a method that allows users to
combine smoothly any kind of human feedback.
Moreover, ICREATe does not work for continuous
action problems, but few feasible considerations
are enough for adapting it to those kinds of
environments.
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