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Abstract— Formulating the dynamics of continuously de-
formable objects and other mechanical systems analytically
from first principles is an exceedingly challenging task, often
impractical in real-world scenarios. What makes this challenge
even harder to solve is that, usually, the object has not been
observed previously, and the only information that we can get
from it is a stream of RGB camera data. In this study, we
explore the use of deep learning techniques to solve this non-
linear identification problem. We specifically focus on extracting
dynamic models of simple deformable objects from the high-
dimensional sensor input coming from an RGB camera. We
investigate a two-stage approach to achieve this goal. First, we
train a variational autoencoder to extract an extremely low-
dimensional representation of the object configuration. Then,
we learn a dynamic model that predicts the evolution of these
latent space variables. The proposed architecture can accurately
predict the object’s state up to one second into the future.

I. INTRODUCTION

Agri-food, disaster response, and manufacturing industries

are examples of sectors that involve physically demand-

ing tasks with highly repetitive actions, often involving

deformable objects. Nowadays, the robotics literature has

almost exclusively focused on the manipulation of garments

or other objects with low mass, low compressive stiffness,

and high friction-to-inertia ratio [1]–[3]. These objects can be

described using purely geometric descriptions developed un-

der quasi-static assumptions [4]–[6]. Still, many objects that

are commonly encountered in the above-mentioned scenarios

do not fulfill these hypotheses. This paper will refer to failure

to verify one or more of these characteristics as having non-

negligible physical response. With these objects, a geometric

representation alone becomes inadequate, necessitating the

inclusion of dynamic response in the model.

Formulating accurate models that describe the behavior of

these objects is extremely difficult as it relies on continuum

mechanics [7]. Numerical techniques like FEM or discrete

rod formulations can be used to generate approximate finite-

dimensional models [8]–[12]. However, these methods rely

on precise knowledge of the object’s geometry and material

properties, which are often unavailable in advance. Moreover,

FEM comes with substantial computational costs.

Machine learning techniques present a promising alterna-

tive to first principle modeling as demonstrated by a rich and

active body of literature in nonlinear identification [13]–[17].

Learning can also be used to directly regress manipulation
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Fig. 1. Robotic systems need access to precise models to predict
the dynamic response of the objects they manipulate. In this work,
we investigate the use of deep learning to achieve this goal. We
demonstrate the architecture on an experimental setup comprising
soft silicone objects held by a Franka Emika Panda robot arm and
a Go Pro camera as the only source of data.

policies for deformable objects [18]–[26]. Yet, all these

works focus exclusively on objects with negligible physical

response.

Outside robotics, the deep learning and control communi-

ties have made notable strides in learning low-dimensional

representations of high-dimensional data streams [27], [28],

with applications spanning fluid dynamics [29], climate sys-

tems [30], aerospace [31], and bio-mechanics [32]. However,

despite these advancements, limited work has been done to

learn continuum mechanical systems as deformable objects.

Among those, [33] specifically focuses on representing de-

formability in faces, hands, and clothes, while [34] tackles

generic kinematic representations. None of these works focus

on learning the dynamics. Recent publications still focus

exclusively on garments [35], [36]. Works considering more

general objects [37]–[40] assume an existing working model

derived from first principles and only focus on compressing

its dimensionality. Furthermore, none of these techniques

have been experimentally validated, highlighting the need

for empirical verification in this domain.

To summarize, to the authors’ knowledge, no work in liter-

ature focuses on learning the dynamics of objects with non-

negligible physical responses, nor do they experimentally test

their results. This paper aims to make a first step towards

filling both gaps. We focus on learning the dynamics of

deformable objects like the one in Fig. 1 while moving pas-

sively as they are constrained in a robotic manipulator. Fig. 2

shows a sketch of the proposed neural architecture. We find

that to learn the passive dynamics of these simple deformable

objects in the latent space, we need a smooth, monotonic

mapping of the configuration from the feature space to the
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Fig. 2. A view of the overall neural architecture (from top left to bottom right). Thanks to the regularization imposed by the variational
mechanism, the encoder can extract a one-dimensional smooth representation of the object configuration. Based on that, we show that
a simple MLP architecture is sufficient to predict the evolution accurately in latent space from n past images. Finally, the prediction is
passed through the decoder, yielding predicted images.

latent space. We show that such a representation can be

achieved using the method of variational autoencoders [41].

Remarkably, with the proposed pipeline, we can describe the

configuration of these albeit simple but theoretically infinite

dimensional objects with just one configuration variable.

Note: All the code, model architectures, training parame-

ters and more results can be found in the following GitHub

repository https://github.com/moss-coleman/Learning-Low-

Dimensional-Representations-for-Deformable-Objects

II. PROPOSED LEARNING ARCHITECTURE

This section will discuss the proposed approach for learn-

ing a low-dimensional dynamic representation of infinite-

dimensional deformable objects1.

A. Assumptions on the setup

We assume to have a stream of high-dimensional sensor

information of the deformable objects so as to capture

their theoretically infinite dimensionality. We use grayscale

images to this end, captured by a camera placed in front

of the gripper holding the objects, as shown in Fig. 1. An

example of some samples from these input data streams is

shown in Fig. 10.

B. Architecture at a glance

The overall architecture is summarized in Fig. 2 and

articulated in two steps. The first is about extracting a

very low dimensional representation of the configuration

space (Fig. 3). It is worth noting now that due to its low

dimensionality, this encoding needs to be smooth enough to

allow for learning of the dynamics. We will thoroughly test

this claim later in the paper. In the second step, we show

how we can train a neural network as a dynamic model in

this latent space using the latent variables as the coordinates

of the system.

1These are the soft pendula in Fig. 4.
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Fig. 3. Architecture of the Variational autoencoder framework, highlighting
the unsupervised nature of the training process.
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Fig. 4. The soft objects used in the experiments consisted of
rectangular objects of width 20mm, thickness 15mm, and lengths of
75mm, 100mm, 125mm, and 150mm. Two more objects of varied
geometry were tested, referred to as the “Concave” and “Double
curve” objects.

C. Learning a latent representation

1) Autoencoder: We employ an autoencoder architecture

[42] to map the grayscale image data to a lower dimensional

latent space representation (x ∈ R
D → z ∈ R

L). The aim is

to retrieve a representation of the configuration of the object,

thus replicating in an automatic and purely data-driven fash-

ion the heuristic process performed based on expert intuition

in the deformable mechanics control literature [43], [44].

The autoencoder is composed of an encoder function,

fe(x; θe) = zn and decoder function fd(z; θd) = x̂, where

θe and θd are the parameters of the encoder and decoder

functions respectively. The parameters of the autoencoder are

trained by minimizing a reconstruction loss of the reconstruc-

tion function r(x) = fd(fe(x)) for example, L(θe, θd) =
||r(x)− x||22 or L(θe, θd) = −logp(x|r(x)).

2) Smooth mapping into latent space: To learn the dy-

namics of a deformable object in the latent space, the latent

space is required to be smooth and have a strictly monotonic



evolution. This strictly monotonic condition implicitly gives

a unique, invertible mapping of the object from the feature

space to the latent space. While the network of the encoder

is a continuous function, it does not guarantee that the latent

representation of an image of the object in one state in the

feature space, fe(xn) → z
n

, will be close to and in the same

order as the states fe(xn+1) → zn+1 and fe(xn−1) → zn−1.

We do not assume to have an ordering of data in the training

set that can be used to enforce monoticity. Instead, we

favour smoothness to penalize abrupt changes in mapping.

We propose to do that by using Variational autoencoders

(VAE) [41]. Fig. 3 summarizes our implementation of the

architecture. VAEs represent the latent space as random

variables with a Gaussian probability distribution, using

two encoder networks. One, the µ-encoder, estimates the

mean of the random variable. The other encoder, the logvar-

encoder, estimates the variance. Both encoders share the

weights of the first number of layers. To train the VAE, the

evidence lower bound is minimized through the following

loss function

L
(

θ,φ;x(i)
)

=Eq(z|x,φ) [log p (x | z, θ)]

−DKL (q (z | x, φ) ∥pθ(z)) .
(1)

The first term weights the expected log-likelihood for the

reconstruction, while the second term, known as the Kull-

back–Leibler divergence, weights the distance between the

posterior distributions. The mechanism in the training pro-

cess that allows an estimate of the posterior distribution

is re-sampling the latent variable based on the estimated

variance of that variable. We believe that this mechanism

can serve as a regularisation term for learning the monotonic

state representation of a dynamical system. This is because

resampling around the estimated latent variable can give

some sense of relative position and order to the configuration

images taken for a training set.

In our examples, we will manually order the images to

test whether the latent representation is monotonic. This

information is, however, not available to the algorithm in the

training phase. To investigate the effect the Kullback-Leibler

divergence measure in the loss function has on discovering

the order from feature space to latent space based on the

configuration of the object, we use the β variation of the VAE

[45]. The β-VAE adds a weighting parameter, β, proportional

to the Kullback-Leibler divergence.

L
(

θ,φ;x(i)
)

= Eq(z|x,φ) [log p (x | z, θ)]

− βDKL (q (z | x, φ) ∥pθ(z))
(2)

As the data is in the form of a grid of pixels, we use

convolutional layers at the beginning of the encoder and

convolutional transpose layers to upsample to the dimension

of the input image in the decoder.

3) Sizing of the latent space: With our experimental

investigation, we want to test the ability of this architecture

to compress the information from high-dimensional data to a

latent space that has the minimum dimension that maintains

a reasonably high reconstruction accuracy. This helps with

generalizability, interpretability, and performing analysis of

the dynamic system in this space - and it is coherent with
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Fig. 5. Mapping of training images to latent space after training
VAE on 41 images of the soft object at 100mm, with values of β
in the loss function of 0.0, and 1.0.

the research in heuristic reduced order modeling discussed

above. To examine the ability of the autoencoder to give

a minimal representation of the state of the system, we

investigate the extreme case of a latent space with dimension

compressed down to one. Note that this extreme choice is

motivated by results in expert-driven model compression in

soft robotics [46].

D. Learning latent Dynamics

With the latent representation of the deformable object as

it deforms through a range of states of interest, smooth and

monotonic, the passive dynamics of the object can then be

estimated from video footage of the object in motion. We

use video data transformed to the latent space to generate

the time series data to train on.

To learn the dynamics, we train a fully connected Multi-

layer perceptron (MLP) on the time series data gathered

from video of the soft object passively moving from random

initial conditions. Note that mechanical systems are second-

order systems, i.e., the state is composed of position and

velocity. The latent space variable z is a representation of

the configuration. To allow the model to estimate velocity

ż, the input nodes of the MLP are given multiple state

measurements. This includes the current state z(t) with

a window of multiple state measurements in the past, n,

i.e., zt, zt−1, zt−2, . . . , zt−n. The output of the network will

predict the state of the system in the latent space one-time

step into the future, zt+1. This can be seen as a discrete

dynamical system as there is a constant time difference, δt,
between the frames of the video encoding to the latent space.

The following predictive model results

zt+1 = fmlp(zt, zt−1, . . . , zt−n; θmlp) (3)

To predict multiple time steps into the future, the predicted

value of zt+1 can be used instead of zt. The window of

values shifts one step forward, where zt−n is no longer input

to the network, and zt−n+1 is the last input into the network.

Then, the network predicts zt+2, etcetera.

E. Hallucinating future images

Latent space predictions can then be mapped back into

the space of images by applying the decoder fe to zt. This

way, fe(zt), fe(zt+1), fe(zt+2), . . . is effectively a stream of

predicted images of the objects that will be recorded in the

future. This process is pictorially represented in the bottom

right of Fig. 2.
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Fig. 6. Mapping of training images from objects of length 75mm,
100mm, 125mm, and 150mm to the latent space, showing desirable
smooth monotonic properties.

III. EXPERIMENTAL SETUP AND TRAINING DETAILS

In this section, after discussing the experimental setup, we

will show how the VAE was trained and then its performance

in representing the state of the soft object in the latent space.

Then, we will show how a neural network was trained to

learn the dynamics of time series data that was mapped into

the latent space from video data using the encoder of the

VAE.

A. Experimental setup

The experimental setup is shown in Fig. 1. To perform

the experiments, the soft object is grasped by the parallel

gripper of a Franka Emika robot manipulator. To isolate the

method from background noise in the images of the object,

we place a black homogeneous curtain as a background.

The experiments are conducted by initializing the object at

random configurations and then allowing the object to swing

under its own passive dynamics. The video data is gathered

from a Go Pro Hero10 camera at 240 frames per second

frame and a resolution of 360x640 pixels. These images are

then compressed to a resolution of 36x64 and grey-scaled

to reduce the size of the network needed. The objects used

in the experiments are shown in Fig. 4. They are made

from silicone and, given their geometry, have non-negligible

inertia compared to their stiffness, which is seen in their

significant passive dynamic response while clamped in the

parallel gripper. For each deformable object of length 75mm,

100mm, 125mm, and 150mm, there were 26, 41, 55, and 68

images, respectively, for the data to train the VAE. For the

Concave and Double curve objects, there were 55 and 21,

respectively. The number of images sampled is due to the

varying time it takes each object to swing through a similar

bending angle. For the video data to train the dynamic model

with latent space configuration coordinates, there were 5

trials of initializing the object and recording until the velocity

was close to null at 240 fps. From the five trials taken, four

were used for training, and one was used as the test data.
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Fig. 7. Results of varying the β parameter on the reconstruction
loss and on the level of smoothness. The latter is measured as the
maximum absolute value of the gradient of the training-images-
number vs z profiles. See Fig. 5 for examples.

B. Training the VAE

A sample of the images used to train the VAE is shown

in the top row of Fig. 10 for a soft object of length 100mm.

To gather these images in the states of interest, the object

was given an initial condition and then allowed to passively

swing through the range of motion. The series of images

from the initial condition to the next time the object reaches

zero velocity is then used as the training data for the VAE.

The VAE model is composed of an Encoder and a Decoder.

The Encoder consists of 3 convolutional layers image size →
32 → 32 → 32, followed by a Dense fully connected layer

of size 1024 → 256 and then two heads of size 256 → 1 for

the µ and σ estimation. The convolutional layers all have a

filter size of 4 and a stride of 2. The Decoder is the inverse

of the Encoder, as it up samples the latent space value to the

size of the original image through two Dense fully connected

layers of size 1 → 256 → 1024, then 3 up sampling layers

of size 1024 → 32 → 32 → image size. A tanh activation

function is used throughout. The hyperparameters used for

training are as follows: learning rate is 10−4, optimizer is

ADAM, regularisation λ = 0.01, and 20, 000 epochs.

C. Training the dynamic model

With an encoder trained that can map the pixel data to the

latent space, we use the µ-encoder to map video recordings

of the soft object moving passively from random initial

conditions. To construct the training set, we split the data

collected in Sect. III-A up into a training and test split, using

4 of the experiments as the training data and one as the

test set. This time series data is then used to train the MLP

model discussed in Sect. II-D. The MLP consists of a fully

connected Multi-Layer Perceptron, with 5 layers of size 20

→ 20 → 20 → 20 → 20 → 1. A tanh activation function is

used. The hyperparameters used for training are as follows:

the learning rate is 10−5, the optimizer is ADAM, and the

learning goes on for 30,000 epochs. For input data to the

model, the time series data in the latent space was divided

into the samples zt, zt−1, . . . , zt−n and the corresponding

zt+1 in the time series as the prediction output data. The

data is then randomly shuffled in the training.

IV. RESULTS AND DISCUSSION

In this subsection, we especially focus on the extreme case

of latent space of dimension one. Still, we will also present
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results for higher dimensional latent spaces as ablation

studies.

A. Auto-encoders reconstruction capabilities

1) Qualitative analysis of latent space smoothness: In the

experiment, the µ-encoder maps selected training images of

the swinging object in Fig.1 to latent space, as shown in

Fig.5. The ordinate plots the latent coordinate z. Each panel

represents a different β value in the loss function. The aim

is to assess the smoothness of the latent space. Results show

that for β = 1.0, the latent space is smooth and monotonic.

In contrast, a non-variational architecture (β = 0.0) leads

to a discontinuous, non-monotonic latent space. We will see

later that this characteristic will result in poor performance

when learning the dynamics.

Similarly, we report the results of a similar experiment

when training the VAE with β = 1.0 on the data sets

collected for the length of objects mentioned in Sect. III-

A. For the object with lengths of 75mm, 100mm, 125mm,

and 150mm, the resulting latent space of training the VAE

to encode the representation from the state training data is

shown in Fig. 6. In all cases, the characteristics are smooth

and monotone, confirming the soundness of the approach.
2) Performance when varying β: To assess the impact of

varying the β parameter on decoder reconstruction quality,

we trained the VAE on a 100mm dataset with β ranging

from 0.0 to 1.0 in 0.1 steps. We used per-pixel RMSE as our

metric. Fig. 7 shows that β has no effect on reconstruction

accuracy within this range. Thus, increasing β to smooth

the latent space incurs no loss in accuracy. Furthermore, this

analysis also aligns with our qualitative findings discussed

in the previous subsection, where the maximum gradient

sharply drops between β = 0 and 0.1 and continues to

decrease marginally with higher β values.
3) Performance when varying the latent space dimension:

We also tested what the effect of the dimension of the

latent space had on the loss (1) during training. For this, we

used the concave data set. As can be seen from the results

in Fig. 8, increasing the size of the latent space does not

significantly improve the reconstruction accuracy of either

the VAE or AE.
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Fig. 9. Example of 4.5 seconds of video data encoded into the
latent space via the AE with variational smoothing.

4) Qualitative remark on the latent space evolution:

Using the µ-encoder, Fig. 9 shows latent space values of

the training video data captured at 240 fps for 4.5 seconds.

Remarkably, this evolution is the one we would expect from

the unforced response of a one-dimensional mechanical sys-

tem, i.e., damped oscillations converging quasi-exponentially

to a steady state.

B. Dynamic model performance

1) Qualitative display of image prediction capabilities:

Fig. 10 displays a qualitative comparison between the MLP-

decoder predictions (bottom) and the test set images (top).

Notably, the prediction horizon length doesn’t seem to affect

the decoder’s image quality, sidestepping a common issue in

learning dynamics within latent spaces [47].

2) Latent space prediction capabilities: In this evaluation,

the MLP is initialized with the latent representation of 20

consecutive images and predicts the next 240 time steps (1

second). Fig. 11 shows the model’s prediction for objects

of varying lengths and shapes, compared to video images

in the latent space at those times. The initial prediction

is highly accurate due to the use of ground truth values.

Subsequently, the model maintains reasonable accuracy and

phase consistency, the latter being particularly important for

a second-order mechanical system.

3) Effect of a non-smooth representation: To highlight the

encoder smoothness’s role in learning latent space dynamics,

we conducted an ablation using a µ-encoder trained with

β = 0, as depicted in Fig.5. We encoded 100mm object video

data similarly to the smooth encoder (Fig.11). Test results

(Fig. 12) show that this model, trained on discontinuous time

series, performs poorly in predictions compared to the test

data.

4) Performance when varying the latent space dimension:

Fig. 13 compares the reconstruction accuracy of predicted

images to real video test data for increasing the dimension

of the latent space. We observe a marginal reduction of error

for the VAE but not for the AE. Moreover, using an AE

together with the MLP always leads to a significant rise in

prediction error. This suggests that smooth latent mapping

is not just beneficial for accuracy; it’s essential for method

feasibility.
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Fig. 10. Comparison between observed and predicted images. (Top) 5 grey scaled images of the soft object, sampled at 240 fps, from
the test data. (Bottom) MLP model initiated at the previous time window from the start of the top images, and its predicted state at the
same time step as the above image, is put through the decoder to give the image predictions shown.
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V. CONCLUSION

This paper investigated learning extremely low-

dimensional dynamical representations of theoretically

infinite dimensional deformable objects. In opposition to the

existing literature in robotics, we focus on objects with a

non-negligible dynamic response. We show experimentally

that a latent space of dimension one can be sufficient to

describe the configuration of these mechanical systems,

and that using variational autoencoders can be the key to
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Fig. 13. A comparison of the performance of the learned dynamic
predictive model, as the dimension of the latent space increases from 1-
5, for data encoded with both the VAE and standard AE

obtaining a smooth representation that lends itself to serve

as the base for learning the dynamics in the latent space.

Future work will focus on enabling dexterous manipulation

of deformable objects by combining these learned models

with model-based control techniques [48].
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