
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2023 1

Robust Jumping with an Articulated Soft Quadruped
via Trajectory Optimization and Iterative Learning
Jiatao Ding1,⋆,†, Mees A. van Löben Sels1,⋆, Franco Angelini2, Jens Kober1, and Cosimo Della Santina1,3

Abstract—Quadrupeds deployed in real-world scenarios need
to be robust to unmodelled dynamic effects. In this work,
we aim to increase the robustness of quadrupedal periodic
forward jumping (i.e., pronking) by unifying cutting-edge model-
based trajectory optimization and iterative learning control.
Using a reduced-order soft anchor model, the optimization-based
motion planner generates the periodic reference trajectory. The
controller then iteratively learns the feedforward control signal
in a repetition process, without requiring an accurate full-body
model. When enhanced by a continuous learning mechanism,
the proposed controller can learn the control inputs without
resetting the system at the end of each iteration. Simulations and
experiments on a quadruped with parallel springs demonstrate
that continuous jumping can be learned in a matter of minutes,
with high robustness against various types of terrain.

Index Terms—Legged Robots, Optimization and Optimal Con-
trol, Motion Control

I. INTRODUCTION

LEGGED robots are expected to take on various tasks such
as industrial inspection, surveillance, and outdoor moni-

toring [1]–[3]. To achieve high traversability of quadrupedal
robots, a robust dynamic motion such as jumping, needs fur-
ther investigation. Joint compliance of articulated soft robots
[4] such as Spacebok [5], Birdbot [6] and ANYmal [7],
provides a promising solution towards this goal. For this
reason, in this work, we focus on a quadrupedal robot with
parallel elastic actuation (PEA). Although there are many
implementations of PEA in quadrupedal locomotion, realizing
highly robust periodic forward jumping, i.e., pronking, with a
PEA-driven quadruped is still an open challenge.

Based on the full-body or centroidal dynamic models,
various planners such as [8]–[13] have been proposed to
generate jumping motion, using trajectory optimization (Topt)

Manuscript received: April, 30, 2023; Revised August, 25, 2023; Ac-
cepted October, 20, 2023.

This paper was recommended for publication by Editor Aleksandra
Faust upon evaluation of the Associate Editor and Reviewers’ comments. This
work has received funding partially from the European Union’s Horizon 2020
Research and Innovation Programme under Grant Agreement No. 101016970
(Natural Intelligence), and in part by Ministry of University and Research
(MUR) as part of the PON 2014-2021 “Research and Innovation” resources
- Green/Innovation Action - DM MUR 1062/2021.

1Jiatao Ding, Mees A. van Löben Sels, Jens Kober and Cosimo
Della Santina are with the Department of Cognitive Robotics, Delft Uni-
versity of Technology, Building 34, Mekelweg 2, 2628 CD Delft, Nether-
lands {J.Ding-2@, M.A.vanLobenSels@student., J.Kober@,
C.DellaSantina@}tudelft.nl

2Franco Angelini is with Centro di Ricerca “Enrico Piaggio” and the
Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa 56126,
Italy frncangelini@gmail.com

3Cosimo Della Santina is also with the Institute of Robotics and
Mechatronics, German Aerospace Center (DLR), 82234 Wessling, Germany
cosimodellasantina@gmail.com

⋆These two authors contributed equally to this work.
†Corresponding author.
Digital Object Identifier (DOI): see top of this page.

techniques that can deal with a large number of constraints
[14], [15]. However, they are applied to rigid robots without
considering parallel elasticity. Instead, the spring-loaded in-
verted pendulum (SLIP) model [16], [17] is able to capture
the system compliance. The reduced-order template, together
with its variants such as 3D SLIP [18], flywheel SLIP [19] and
p-SLIP [20] makes the problem of generating jumping motions
more tractable, which however usually ignores the actuation
limits. To tackle this issue, a compliant anchor model with a
similar morphology to a real quadruped could be used, without
causing a heavy computing burden.

Once the trajectory is planned, the main obstacle is de-
signing a robust controller accounting for the highly-nonlinear
underactuated dynamics and the intense contact with uncertain
environments. The standard approach to execute jumping mo-
tions is feedback control [9]–[11], even with the exploitation
of the natural dynamics of elastic legged systems [21]–[24].
However, feedback alters the stiffness of elastic systems with
a factor proportional to the feedback gain [25], defeating the
purpose of introducing physical compliance. In this regard,
feedforward control with minimal reliance on feedback is
preferable [4]. For quadrupedal jumping, feedforward torque
compensation could be realized by quadratic programming
[26] or model predictive control (MPC) [8], [27], yet they
are only applied to rigid quadrupedal robots. Recent work in
[28] uses normal mode theory to exploit and stabilize modal
oscillations for efficient locomotion of an elastic quadrupedal
robot, but no jumping motion is executed. Differing from
the above approaches, iterative learning control (ILC) [29]
methods learn the control inputs through repetitive iterations,
without requiring any accurate models. In addition, the feed-
forward nature of ILC in the time domain preserves the
physical compliance of the system, and the feedback in the
iteration domain enhances the tracking performance. ILC has
already been applied to articulated soft robots such as [30]–
[32], however, the application to quadrupedal jumping has
never been found before.

In this work, we make a step towards unifying trajectory
optimization and iterative learning for robust jumping of a
PEA-driven quadruped, see Fig. 1. Inspired by the SLIP model,
the trajectory optimizer generates periodic jumping motions,
based on a complaint single-body dynamics (CSBD) model
with a similar morphology to that of the quadrupedal system.
Then the ILC learns the control inputs through feedback in
the iteration domain, omitting the need of identifying the com-
pliant full-body dynamics. Specifically, we extend functional
ILC (fILC) [33] to nonlinear systems to track the optimal
trajectory at selected time instances of interest. To avoid
resetting the system state after each iteration, we introduce
a continuous learning mechanism. The proposed strategy is
tested in simulations and validated on the Delft E-Go robot

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2023

Memory

States

User input

Trajectory optimization Functional Iterative learning

PEA-driven robot

YY Ej L

YjYj(Reduced-order modelling)

π

Reference

trajectory

ujuj
αjαj

αj-1αj-1

Torque

command

(Feedforward control)

Fig. 1: Overview of the proposed jumping control framework for the PEA-driven quadruped. From left to right: the user provides a desired
forward velocity, and the trajectory optimizer uses a simplified model to generate a periodic jumping motion that minimizes the cost of
transport. The functional iterative learning stage generates a continuous evolution of torque control action to implement the desired trajectory.
The direction of learning is guided by the knowledge of the approximate model.

with parallel elastic actuators.
The contributions are three-fold:
(1) We formulate a SLIP-inspired trajectory optimizer that

generates periodic jumping motion explicitly considering the
parallel elasticity, by employing a CSBD template with a
similar morphology to a real quadrupedal.

(2) We introduce fILC for nonlinear robust jumping control,
alleviating the need to build an accurate full-body dynamic
model. Enhanced by a continuous learning mechanism, the
fILC can find optimal actions for pronking through unseen
scenarios within a few minutes, without resetting the system
state after each iteration.

(3) We preliminarily validate our approach on a newly-
designed PEA-driven robot. The experiments demonstrate the
stability and robustness of the proposed framework.

II. SLIP-INSPIRED JUMPING MOTION OPTIMIZATION

In this section, we first introduce an anchor CSBD model to
describe the sagittal quadrupedal jumping motion, by bridging
the trunk SLIP model with the full-body model. Then, we
derive the reduced-order jumping dynamics with explicitly
considering parallel compliance. Finally, we present the Topt
for jumping motion generation

A. CSBD: bridging the SLIP and Quadruped
The trunk SLIP (TSLIP), extending the naive SLIP [17] by

adding a rotating trunk on the CoM (see Fig. 2(a)), is employed
to capture the quadrupedal jumping dynamics. During the
stance phase, the TSLIP motion is governed by the ground
reaction force and the torque at the trunk while during the
flight phase, governed by gravity. In the sagittal plane, the
system states include the CoM position (consists of forward
position (x) and vertical position (z)) and the pitch angle of
the rotating trunk (β). Besides, we assume the robot touches
down with a virtual touchdown angle (θvirt) and a virtual length
(lvirt), as illustrated in Fig. 2(a).

The TSLIP template behaviour is then embedded into a
more realistic anchor model whose morphology is closer to
that of the actual system, through adding links, actuators, and
elastic joints, as depicted in Fig. 2(b). To bridge the TSLIP
and quadrupedal, we propose the following mapping rules:

i. legs are massless, formulating a single-mass model,
ii. each leg joint is enhanced with a parallel spring,
iii. the leg position in the TSLIP model is in the middle of

the hind and front foot positions in the anchor model.
Additionally, we assume that the two feet touch down and

lift off simultaneously, i.e., pronking gait. As a result, two
feet positions can be parameterized at touchdown (TD) using
touchdown angle θvirt, leg length lvirt (see Fig. 2(a)) and the
trunk length ltrunk (see Fig. 2(b)).

 x

zz

(x,z)
θ3

ltrunk

 x

lthigh

lcalf

(b)(a) m, J

θvirt

β

θ2

θ1

θ4
θ5

θ6

(x0,z0)τ3

τ2 τ5

τ4

lvirt

ltrunk

ltrunk ltrunk

τ1 τ6

Fig. 2: The TSLIP at touchdown (a) and the CSBD anchor model in
homing configuration (b). In (b).

B. Hybrid reduced-order jumping dynamics
The configuration of the 2D sagittal motion can be repre-

sented by the special Euclidean group SE(2), parameterized
by the generalized coordinates q = [x, z, β]T ∈ R3. The
system inputs are the motor torques τ = [τ2, τ3, τ4, τ5]

T ∈ R4

at the thigh and calf joints, as can be seen in Fig. 2(b).
1) Flight dynamics: During the flight phase, the system

follows a ballistic trajectory, which is modelled as
M(q)q̈ +G(q) = 0, (1)

where M ∈ R3×3 is the mass matrix and G ∈ R3 is the
gravitational term.

2) Stance dynamics: During the stance phase, the gener-
alized coordinates q are mapped to the joint angles θ ∈ R6

through the mapping function h :q 7→θ, where h is obtained
using inverse kinematics. In joint space, the contribution of
the parallel spring can be easily captured [28]. The equation
of motion (EoM) of the anchor model is obtained using
Lagrangian mechanics, resulting in the stance dynamics

M(q)q̈ +G(q) + Jh
T(q)K (θ − θ0) = F , (2)

where K ∈ R3×3 is the spring stiffness matrix, θ0 is the spring
rest positions, Jh = dθ

dq ∈ R6×3 is the Jacobian that maps
from joint space to generalized coordinates, and F ∈ R3 is
the spatial wrench which is a function of the motor torques
τ . The derivation of EoM (2) is explained in the Appendix.

Solving (1) and (2) for the accelerations q̈ leads to

q̈ = −M−1G (flight)

q̈ = M−1
(
F −G− Jh

TK (θ − θ0)
)

(stance)
(3)

Choosing the system state x =
[
q, q̇

]T ∈ R6 and control input
u = τ ∈ R4, (3) is then rewritten as

ẋ = f(x,u). (4)

C. Topt formulation
In this work, one jumping stride is divided into three phases,

i.e., an initial flight phase, a stance phase and a final flight
phase, which are separated by a TD event and a takeoff (TO)

DING et al.: ROBUST JUMPING WITH AN ARTICULATED SOFT QUADRUPED VIA TRAJECTORY OPTIMIZATION AND ITERATIVE LEARNING 3

event. The optimization problem is then transcribed using
multiple shooting by dividing it into N − 1 intervals with
N grid points. The TD and TO events separately take place
at the nTD-th and nTO-th grid points. The time step dt of
each interval is also automatically chosen by the Topt problem,
which is formulated as

min
dt,x1,...,xN
u1,...,uN−1

Objective,

s.t. Feasibility constraints.
(5)

1) Objective function: The objective of the optimization
problem is to find a periodic jumping trajectory. To this end,
we minimize the cost of transport (CoT)1 while obeying the
periodicity constraints. Since CoT is defined as the energy
input E required to move a system of weight mg over a
distance d [34], the objective function is then formulated as

CoT =
E

mgd
=

∑N
n=1

∑5
i=2

∣∣∣τn
i θ̇

n
i

∣∣∣
mgxN

, (6)

where xN is the longitudinal position on the final node.
2) Feasibility constraints: Various constraints are taken into

consideration in the Topt problem, including
Initial condition: The stride starts at an apex, i.e. at zero

vertical velocity, and at zero initial horizontal position, i.e.,

[x1, ż1]
T
= 0. (7)

Periodicity constraints: The periodicity is enforced by con-
straining the final state xN equate to the initial state x1 except
for the longitudinal position, formulated as

x1\{x1} = xN\{xN}. (8)

Dynamics constraints: The system dynamics of the CSBD
model are integrated within each step using the EoM in (4).
The following constraint is set at each grid point to guarantee
the continuity between the adjacent nodes:

xn+1 = F (xn,un,f(xn,un), dt), (9)

where F (·) are determined by state xn and control input un.
Various numerical processes can be used to this end, and we
use the fourth-order Runge-Kutta algorithm.

In (9), the dynamic transfer is chosen in the following way
such that the system is in flight before nTD and after nTO,

f(xn,un)=

{
fflight(xn,un) ∀n∈ [1, nTD)∪[nTO, N]

fstance(xn,un) ∀n∈ [nTD, nTO)
, (10)

where fflight and fstance are determined in (4) by using the first
and second row in (3), respectively.

Switch conditions: Constraints are imposed at the switching
nodes to guarantee kinematical feasibility. A TD event is
formulated as the moment when the system state is in the
touchdown manifold, given by

xnTD ∈ XTD = {x | z − lvirt cos(θvirt) = 0, ż < 0}. (11)

Similarly, a TO event occurs when the system state is in the
take-off manifold, given by

xnTO ∈ XTO = {x |
√

x2 + z2 − lvirt = 0, ż > 0}. (12)

State limits: Robot states are constrained by
xmin ≤ xn ≤ xmax, (13)

1CoT is widely used in optimization formulation for locomotion genera-
tion. Considering we are focusing on robust jumping, we make no claim of
energy efficiency in this work.

where xmin and xmin are the lower and upper boundaries.
Actuator constraints: Input torques are limited by

umin ≤ un ≤ umax, (14)

where umin and umax are determined by actuation capability.
Time step constraints: Time step dt is limited by

dtmin ≤ dt ≤ dtmax, (15)

where dtmin and dtmax are determined by the shortest and
longest jumping stride.

III. ITERATIVE LEARNING-BASED JUMPING CONTROL

To control the quadruped with parallel compliance, we
propose the use of fILC to overcome the dynamic uncertainties
by iteratively learning the feedforward control signal. A block
diagram of the controller is depicted in Fig. 1.

A. Functional iterative learning control
1) Background: Originally, fILC was developed for linear

systems [33]. Given a linear continuous system
ẋj(t) = Axj(t) +Buj(t), yj(t) = Cxj(t), (16)

with iteration index j, A ∈ Rn×n,B ∈ Rn×l,C ∈ Rm×n,
xj ∈ Rn, uj ∈ Rl, yj ∈ Rm, and l < m, fILC learns the
feedforward control signals obeying the following principles:

1. Differing from the classical ILC approaches, fILC
does not track the reference ȳ completely, but rather tracks
it at certain time instances of interest, given by {T 1, . . . , T o},
where o is the number of time instances and the superscript
denotes the index. Denoting the desired outputs (obtained by
the above motion planner) at the time instances as {ȳ1 . . . ȳo},
the goal of the controller then is to iteratively learn the control
input uj(t), such that

lim
j→∞

yj(T
k) = ȳk, ∀k ∈ 1, . . . , o. (17)

2. The control input uj(t) is learned in a functional
subspace of continuous basis functions π. In particular, pa-
rameterized as a linear combination of functions, the control
input is given by

uj(t) = π(t)αj , π =
[
π1 . . .πo] ∈ Rl×mo, (18)

where π is a matrix of basis functions, with πi ∈ Rl×m and
weight vector αj ∈ Rmo.

The closed form solution of (16) is

yj(t) = CeAtx(0) +C

∫ t

0

eA(t−τ)Buj(τ)dτ. (19)

Substituting (18) and then sampling (19) at the i-th time
instance, we have

yj

(
T i

)
=CeAT i

x(0)+
(∫ T i

0
CeA(T

i−τ)Bπ(τ)dτ
)
αj . (20)

Using the super-vector notation for all instances, we have
Yj = dj +Hαj , where dj ∈ Rmo is the free response and
H ∈ Rmo×mo is the forced response to all π.

The weights αj are learned iteratively through proportional
error feedback, given a typical ILC learning rule

αj+1=αj+LEj = αj+L
(
Ȳ −Yj

)
=αj+L

ȳ
1 − yj

(
T 1

)
...

ȳo − yj (T
o)

, (21)

where L ∈ Rmo×mo is the learning gain, Ej ∈ Rmo is the
iteration error, Ȳ ∈ Rmo is the reference, and Yj ∈ Rmo is
the iteration output.

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2023

2) Nonlinear system control: For a nonlinear quadruped
system, we have the following dynamic at j-th iteration,
ẋj(t) = f(t,xj(t),uj(t)), yj(t) = g(t,xj(t),uj(t)), with
xj ∈ Rn, uj ∈ Rl, yj ∈ Rm, and l < m. In the nonlinear
case, H usually cannot be obtained as in (20). As H is the
input-output map of the system response to the basis functions
π, which are sampled at the time instances {T 1, . . . , T o}, it
can be formulated as

H=

g(T 1,x,π1) g(T 1,x,π2) · · · g(T 1,x,πmo)
g(T 2,x,π1) g(T 2,x,π2) · · · g(T 2,x,πmo)

...
...

. . .
...

g(T o,x,π1) g(T o,x,π2) · · · g(T o,x,πmo)

. (22)

The matrix H can then be obtained from experiments,
by exciting the system from equilibrium and recording the
responses, omitting the need to identify an explicit model.

B. Controller design
The learning gain L and basis function matrix π are

determined as follows,
1) Learning rule: We use a linear quadratic learning rule

to compute the optimal learning gain L by minimizing

J(αj) = ∥Ej∥2QLQ
+ ∥αj −αj−1∥2SLQ

, (23)

such that

L =
(
HTQLQH+ SLQ

)−1

HTQLQ, (24)

where QLQ and SLQ are diagonal gain matrices [35].
2) Basis functions: The selection of an appropriate family

of basis functions determines the behaviour of the controller.
[33] argued that any choice of π suffices that H is full rank is
accepted. To be simple, we here select a set of mo Gaussians
as our basis functions, with the mean µ and variance σ2 per
Gaussian to select (A detailed discussion can be found in
Section. IV-C1). As the robot can only be controlled during the
stance phase, the means are distributed evenly between the TD
and TO timings, i.e., tTD and tTO respectively. Furthermore,
we use the same variance for each basis function. Outside this
interval, the basis functions are set to zero, formulated as

πi(t) =

 1

σ
√

2π
e
− 1

2

(
t−µi

σ

)2

if tTD ≤ t ≤ tTO,

0 otherwise.
(25)

The configuration of the basis functions πi in the matrix
π should also be designed to prevent coupling of the control
inputs, as each column of π is multiplied with a single scalar
weight αi. To this end, each column of π only contains one
basis function. Furthermore, each row of π preferably has an
equal amount of basis functions, such that the control authority
is distributed equally over available control inputs. We use the
following configuration for π,

π(t)=
[
π1 . . . πo

]
=

π1(t) 0 0 0 π5(t) · · · 0
0 π2(t) 0 0 0 · · · 0
0 0 π3(t) 0 0 · · · 0
0 0 0 π4(t) 0 · · · πmo(t)

. (26)

C. Continuous learning mechanism
The discontinuous learning process inherent to ILC requires

resetting the system state after each iteration, which is tedious

for the hardware test. To tackle this issue, we introduce the
continuous learning mechanism, whereby the final state of
the current iteration is used as the initial state for the next
iteration. To this end, we modify the learning rule in (21) by
adding a diagonal scaling matrix W, enabling us to increase
the learning rate in some states and to switch it off in others.
The new learning rule becomes

αj+1 = αj + L(WEj), (27)

where W ∈ Rmo×mo is the scaling matrix.
With this continuous learning mechanism, we do not need

to reset the system after each iteration. Note that, aside from
the change in (27), the controller design is unchanged.

IV. SIMULATION EVALUATIONS

The section validates the proposed method via full-body
dynamic simulations2.

A. Setup
In simulation, the offline trajectory planner and the online

learning controller are both implemented in Python. We use the
CasADi [36] to formulate the Topt problem, using ‘IPOPT’
as the solver. The PyBullet [37] is utilized to emulate the full-
body quadrupedal system.

The model parameters are listed in Table I. Particularly, the
springs are selected such that the simulated quadrupedal robot
in PyBullet is able to sustain itself without using its actuators
while in standstill, which was found to be 50Nmrad−1 for
all calf and thigh joints. Considering the 2D anchor model
should produce twice the amount of torque per leg, the
spring constants are set at 100Nmrad−1. Also, the torque
boundaries are doubled in the anchor template model.

B. Jumping motion generation
Setting θvirt = 15◦, the NLP solver finds the optimal solution

within approximately 7 s, resulting in a CoT of 0.535. The
generated trajectories are shown in Fig. 3. We observe smooth
trajectories in three phases, with a symmetric height trajectory
(‘z’ curve in Fig. 3) around 0.075 s. During the first flight
phase (0∼0.05 s) and the final flight phase (0.1∼0.15 s), the
robot falls freely under gravity without torque inputs.

When setting all the elements in K (in (2) and (3)) to
be zeros, jumping trajectories for a rigid quadruped without
parallel actuators can be generated. In this rigid case, a
larger CoT is obtained (see Table II). That is, compared
to stiff locomotion, parallel elastic elements improve energy
efficiency.

To further demonstrate the advantage of the current Topt
formulation, we compare it with an alternative formulation,
where the control inputs are minimized. That is, we replace
the object (6) by τsum =

∑N
n=1

∑5
i=2(τ

n
i)

2. As a result, the
jumping trajectory can still be generated. However, the resul-
tant CoT is 0.937, which is much larger than that of the current
formulation. Thus, in this work, we minimize the CoT when
generating the periodic jumping trajectory.

2Videos of all the results can be accessed at: https://youtu.be/j-
5WtDPZHCw

DING et al.: ROBUST JUMPING WITH AN ARTICULATED SOFT QUADRUPED VIA TRAJECTORY OPTIMIZATION AND ITERATIVE LEARNING 5

TABLE I: Optimization model parameters

Parameter Value Parameter Value
J (kgm2) 0.103 N (-) 150
lcalf (m) 0.213 nTD, nTO (-) 50, 100
lthigh (m) 0.213 dtmin, dtmax (s) 0.001, 0.01
ltrunk (m) 0.188 xmin, xmax (m) 0, 2
lvirt (m) 0.301 zmin, zmax (m) 0, 2
θvirt (◦) 15 βmin, βmax (m) 0, 5
θ02 (◦) 45 ẋmin, ẋmax (m/s) 0, 5
θ03 (◦) -135 żmin, żmax (m/s) -2, 2
θ04 (◦) -135 β̇min, β̇max (m) 0, 2
θ05 (◦) 45 τ2min , τ2max (Nm) -71.1, 71.1
k2,k5 (Nmrad−1) 100 τ3min , τ3max (Nm) -47.4, 47.4
k3,k4 (Nmrad−1) 100 τ4min , τ4max (Nm) -47.4, 47.4
m (kg) 13.013 τ5min , τ5max (Nm) -71.1, 71.1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.0

0.2

Po
si

tio
n x (m) z (m) (rad)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
t (s)

25

0

C
on

tro
l i

np
ut

s (
N

m
)

2 3 4 5

Fig. 3: Optimization results of the CSBD model with springs. We
show both the evolution of the system and the control action for one
single stride.

C. FILC-based jumping control

For the fILC, the selected time instances of interest are
the lowest point of the trajectory, the take-off event and the
final apex, i.e., at the node indices {75, 100, 150}. At the start
of the learning process, the system is set to the initial state
determined by the planner and the weights of the first iteration
are set to zeros, namely, α0 = 0. Once an iteration is finished,
the system is reset to the initial state and the next control signal
is executed.

1) fILC using different basis functions: Firstly, the torque
profiles generated by the Topt are fed into the simulated
quadrupedal robot directly, leading to large state errors with
the maximal absolute error (MAE) being 0.350.

Before applying fILC, we compare Gaussian kernel with
other two basis functions, i.e., Polynomial kernel and Radial
basis function (RBF), which are formulated as

Polynomial: πi(t)= A1
((t− µi)2 +B1(t− µi))

σ2
1

,

RBF: πi(t)= A2e
− 1

2

(
t−µi

σ2

)2

,

(28)

with σ2
1 = 3e−5, A1 = 0.22, B1 = 1.5 and σ2

2 = 4e−5, A2 =
57. For Gaussian kernel in (25), we have σ2 = 5e−5.

Fig. 4 plots the evolutionary MAE as iteration grows. As
can be seen, after 150 iterations, the MAE drops to a very
small value. Fig. 5 draws the CoM trajectories after 150
iterations. We can see that the RBF kernel contributes to the
least MAE, with the best tracking performance. However, the
Gaussian kernel results in a smoother MAE profile, with a
decent tracking performance. Thus, in this work, we use the
Gaussian kernel in the remaining parts. As listed in Table II,
the resultant MAE with Gaussian kernel is 4.48× 10−3, with
the measured CoT 0.765. The learned weights and control
inputs using the Gaussian kernel are presented in Fig. 6.

0 25 50 75 100 125 150
Iteration

10 2

10 1

M
A

E

Gaussian
Polynomial
RBF

Fig. 4: Evolution of the maximal absolute error during the fILC
learning process when using different kernel functions.

TABLE II: CoTs and MAEs in jumping, ‘Planner’ and ‘Controller’
separately present the results from the trajectory optimizer and
jumping controller.

Planner Controller

stiff
(CoT)

elastic
(CoT)

elastic
(τsum)

elastic
(no learning)

elastic
(fILC)

elastic
(MPC)

CoT 0.596 0.535 0.937 3.83 0.765 1.565
MAE - - - 0.350 0.00448 0.0986

2) fILC vs MPC: To further demonstrate the effectiveness,
we compare fILC with an MPC scheme (similar to [27])3,
which is introduced here for the first time for periodic jumping
control of a PEA-driven quadruped. The measured CoM is
plotted by a red solid curve in Fig. 5. Results in Table II
demonstrate that the fILC obtains a smaller MAE and a lower
CoT than MPC.

D. Continuous fILC in PyBullet simulation
To realize continuous jumping without resetting the state af-

ter each stride, we apply the continuous learning approach with
the scaling factors W = diag(s, s, s) (s = (0, 10, 1, 2, 2, 1)).
The fILC gains are QLQ = 0.05I18 and SLQ = I18, and
σ2 = 0.001. On flat ground, the quadruped is able to learn
pronking gait after 110 iterations. The decrease of MAE is
presented in Fig. 7 and the evolution of CoM trajectory is
visualized by the red curve at the top of Fig. 8.

The robustness is then validated on the quadrupedal jumping
on randomly generated uneven terrain, by initializing the
weights with the previous ones learned for the flat ground.
It demonstrates that the robot managed to traverse the uneven
terrain without modelling it by virtue of continuous fILC, as
can be seen in the bottom of Fig. 8.

0.00 0.02 0.04 0.06 0.08 0.10 0.12
x (m)

0.29

0.30

z
(m

)

Gaussian Polynomial RBF MPC

Fig. 5: Evolution of the CoM as resulting from the application of fILC
with three different choices of basis functions. The performance of
an MPC controller which relies on a perfect knowledge of the model
is also shown as a comparison. ‘×’ marks the reference way-point
of interest.

3To our best knowledge, no MPC strategy is reported on the continuous
jumping control of a PEA-driven quadrupedal robot. However, the MPC
framework in [27] is widely used in dynamic locomotion control.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2023

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Index

0.5

0.0
Le

ar
ne

d
w

ei
gh

ts

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
t (s)

25

0

25

C
on

tro
l i

np
ut

s (
N

m
) 2 3 4 5

Fig. 6: An example of the learned weights (top) and resulting torque
inputs (bottom) obtained when using the truncated Gaussian kernels.

0 50 100
Iteration

10−1

6×10−2

2×10−1

3×10−1

M
A

E

Fig. 7: The evolution of maximal absolute error when using the
continuous learning variation of fILC.

It is worth mentioning that without updating the reference
in real-time or adding an extra compensation mechanism for
earlier/later contact, the robot can hardly pronk on flat ground
when using the MPC scheme. A comparison motion can be
found in the attached video.

V. HARDWARE EXPERIMENTS

A. Experimental setup

This section validates the proposed method on our PEA-
driven robot (we call it E-Go here) that is presented in Fig. 9.
The parallel springs are separately attached to the knee joints
and hip joints of the Unitree Go1 robot [38]. With PEA add-
ons, the E-Go weighs in total about 13 kg. To apply fILC
on the quadrupedal robot, the input-output map in (22) needs
to be determined in advance. However, the inherent learning
property of fILC does not necessarily require an accurate H
matrix. Thus, we directly adopt the H matrix achieved in the
simulation when conducting hardware experiments.

The springs of the E-Go quadruped are much softer than the
ones used in the PyBullet simulation, namely 6Nmrad−1 for
the calf joints and 16Nmrad−1 for the thigh joints, compared
to 50Nmrad−1 used for all joints in simulation. As a result,
the physical springs are not stiff enough to support the weight
of the robot without additional motor inputs. We compensate
for this using a PD controller, τPD = KP(q

ref
j − qj) −KDq̇j,

where qj ∈ R8 and qref
j ∈ R8 are the real and reference joint

Fig. 8: Continuous fILC learning for periodic forward jumping on
the flat ground (top) and across rough terrain (bottom).

calf thigh

Fig. 9: Two views of the E-Go robot, a Unitree Go1 robot enhanced
with springs acting in parallel to all the twelve joints. The springs
acting in the sagittal plane for the E-Go robot are highlighted.

0.05 0.00 0.05 0.10 0.15
x (-)

0.25

0.30

0.35

z
(m

)

22.05 22.10 22.15 22.20
t (s)

25

0

C
on

tro
l i

np
ut

 (N
 m

)

2 3 4 5

0

20

t (
s)

Fig. 10: Learned results for E-Go jumping on flat ground. The top
shows the x-z trajectory after 52s, with the black curve indicating the
simulation result. The bottom panel shows the torque inputs of one
jumping cycle. Note that the x-axis at the top has no unit.

angles in the sagittal plane, q̇j ∈ R8 the real joint velocities,
KP ∈ R8×8 and KD ∈ R8×8 separately are proportional and
derivative gain. The gains are KP = 60 and KD = 1 for
all joints such that the robot can stand up. For continuous
jumping, the command torque sent to the motor is then the
sum of the fILC output (run at 500 Hz) and the feedback
torque (run at 10 KHz). The communication between different
controllers is realized via the ROS node.

B. Jumping on flat ground
To start, the fILC is tuned without engaging the parallel

springs, following the trajectory generated for a rigid robot.
The scaling factors W = diag(s, s, s) (s = (0, 10, 1, 2, 2, 1)),
together with controller parameters including QLQ = 0.1I18,
SLQ = I18 and σ2 = 0.1 are used for jumping on flat
ground. Thereafter, the learned weights are used to initialize
the controller for jumping with springs engaged.

With springs engaged, we start from a standstill and let
the PEA-driven robot learn weights (following the reference
trajectory for a compliant robot) until it runs up to 3m, which
occurred after 52 s. Then, we transfer the learned weights to
a new learning cycle. This time, it took only 20 s to reach the
target distance. Fig. 10 shows learned results for flat-ground
jumping with parallel springs engaged.

The evolutionary x-z trajectory at the top panel of Fig. 10
demonstrates that, without identifying the H matrix for the
hardware system from scratch, the fILC can converge and
accomplish the jumping task. In addition, the shapes of the
measured x-z curve are quite close to the one obtained in the
simulation (black curve at the top panel)4. Aside from this,
the feedforward torque inputs computed by fILC are below
the physical limits, as can be seen from the bottom panel.

4Considering the large state estimation error due to the landing impact,
we do not plot the global jumping distance in Fig. 10.

DING et al.: ROBUST JUMPING WITH AN ARTICULATED SOFT QUADRUPED VIA TRAJECTORY OPTIMIZATION AND ITERATIVE LEARNING 7

Fig. 11: Continuous jumping on flat terrain (first row), rough grassy terrain (second row), a slope (third row) and uneven movable pads
(bottom). At the bottom, the rigid quadruped successfully jumps across the soft pads (on the left) and also the rigid pads (on the right).

C. Robust pronking
We then test the method’s robustness in three unfavourable

conditions. In all cases, the ground is modeled as flat and the
robot is assumed to be PEA-driven.

1) Outdoor uneven terrain: The method is initialized with
the learned weights from the previous indoor learning cycle.
The other controller parameters are left unchanged. We start
the new learning cycle when the robot is placed on concrete
bricks while facing the grassy ground. We observe that the
controller is able to successfully transit between different types
of terrain, e.g., from uneven rigid concrete to uneven grassy
ground and from grassy ground to flat concrete ground. The
second row of Fig. 11 shows several snapshots.

2) Slope terrain: The controller is also tested on an inclined
slope of 5◦. Again, the cycle is initialized with the weights
learned indoors. We let the robot face the slope, starting from
level ground. The controller successfully transits from the level
ground to the slope. Several snapshots are presented in the
third row of Fig. 11.

3) Model and environment uncertainties: To further vali-
date the robustness, we test the continuous jumping on uneven
ground, without springs engaged. Note that the reference
trajectory was generated for a PEA robot, not for the rigid
case, causing modelling discrepancies. Even though, it turns
out that the robot can learn to jump across uneven terrain
using fILC. Snapshots at the bottom of Fig. 11 show that the
robot can jump across randomly-distributed movable pads on
the way, including soft pads (see the orange box on the left
side) and rigid pads (see the blue box on the right side).

VI. CONCLUSION

This work controls quadrupedal jumping using trajectory
optimization and iterative learning. By introducing a compliant
single-mass anchor model, we achieve periodic jumping gait,
explicitly considering the parallel compliance in joint space.
The use of fILC enables learning the feedforward control in
only a matter of minutes, releasing the effort in building an
accurate mathematical description of the full-order system. To
the best of the authors’ knowledge, this is the first report to
use ILC to control a PEA-driven quadruped jumping.

Several recommendations can be made to improve this
work. First, instead of giving the virtual touch-down angle θvirt
and the virtual leg length lvirt in advance, we can incorporate

them into the optimization formulation to achieve a more
efficient gait accompanied with better jumping performance,
such as longer jumping distance and larger jumping height.
Second, regarding fILC design, other basis functions such
as a high-order polynomial kernel could be investigated. In
addition, alternative learning rules such as those with Q-filter
[39] potentially increase the convergence rate and improve the
tracking accuracy.

Alternatively, learning from expertise reference [40]–[43]
helps to achieve natural and efficient locomotion stills,
among which the reinforcement learning (RL)approach is very
promising since it allows the robot to learn by interacting with
environments. However, the RL-based methods usually require
a large number of iterations before converging. In contrast to
fILC, it is very hard to run the RL-based method online. Still,
it would be interesting to combine RL with ILC in learning the
versatile strategy in more challenging scenarios in the future.

APPENDIX

The EoM of the quadruped during the stance phase is
computed using Lagrangian mechanics, with kinetic energy
m
2

(
ẋ2 + ż2

)
+ J

2 β̇
2 and potential energy

mgz+k2
2
(θ02−θ2)

2+k3
2
(θ03−θ3)

2+k4
2
(θ04−θ4)

2+k5
2
(θ05−θ5)

2 .

Solving the Euler-Lagrange equation results inm 0 0
0 m 0
0 0 J

ẍz̈
β̈

+

∑5

i=2 ki(θi − θ0i)
d

dxθi∑5
i=2 ki(θi − θ0i)

d
dz θi∑5

i=2 ki(θi − θ0i)
d

dβ θi

+
 0
mg
0

=
Fx

Fz

τβ

 (29)

or, alternatively,

M(q)q̈ + Jh
T(q)K (θ − θ0) +G(q) = F , (30)

where K = diag(0, k2, k3, k4, k5, 0). The partial derivatives
of θ with respect to q are obtained using SymPy [44]. The
spatial wrench F is given by

F =

Fx

Fz

τβ

 =

 FHx
+ FFx

FHz
+ FFz

FH × rH + FF × rF

 , (31)

where FH and FF are the ground reaction forces of each leg
as a result of the motor torque τ , while rH and rF are the
vectors from the CoM to the hind and front legs.

The motor torques τ are converted from joint coordinate
space to generalized forces using the contact Jacobians of the

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED OCTOBER, 2023

hind and front leg, JH and JF respectively. As the legs exert a
force on the ground, the ground reaction force that is exerted
on the robot is equal and opposite, given by

[
τH
τF

]
=

FHx

FHz

FHβ

FFx

FFz

FFβ

=

0 0 0

−J−T
H 0 0 0

0 0 0
0 0 0

0 0 0 −J−T
F

0 0 0

0
τ2
τ3
τ4
τ5
0

 , (32)

where the subscript denotes the ground reaction force compo-
nent in the direction of one of the generalized coordinates. As
the joint torques are converted to equivalent forces at the feet,
FHβ

and FFβ
are both equal to zero.

REFERENCES

[1] C. D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Günther,
M. Tranzatto, P. Fankhauser, and M. Hutter, “Advances in real-world
applications for legged robots,” J. Field Robot., vol. 35, no. 8, pp. 1311–
1326, 12 2018.

[2] F., Angelini et al., “Robotic Monitoring of Habitats: The Natural
Intelligence Approach,” IEEE Access, 2023.

[3] J. Ding, L. Han, L. Ge, Y. Liu, and J. Pang, “Robust locomotion
exploiting multiple balance strategies: an observer-based cascaded model
predictive control approach,” IEEE/ASME Trans. Mechatron., vol. 27,
no. 4, pp. 2089–2097, 2022.

[4] C. Della Santina, M. G. Catalano, A. Bicchi, M. Ang, O. Khatib, and
B. Siciliano, “Soft robots,” Ency. Robot., vol. 489, 2021.

[5] H. Kolvenbach, E. Hampp, P. Barton, R. Zenkl, and M. Hutter, “Towards
Jumping Locomotion for Quadruped Robots on the Moon,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2019, pp. 5459–5466.

[6] A. Badri-Spröwitz, A. Aghamaleki Sarvestani, M. Sitti, and M. A. Daley,
“Birdbot achieves energy-efficient gait with minimal control using avian-
inspired leg clutching,” Sci. Robot., vol. 7, no. 64, p. eabg4055, 2022.

[7] F. Bjelonic, J. Lee, P. Arm, D. Sako, D. Tateo, J. Peters, and M. Hutter,
“Learning-based design and control for quadrupedal robots with parallel-
elastic actuators,” IEEE Robot. Autom. Lett., 2023.

[8] C. Nguyen, L. Bao, and Q. Nguyen, “Continuous jumping for legged
robots on stepping stones via trajectory optimization and model predic-
tive control,” in Proc. IEEE Conf. Decis. Control, 2022, pp. 93–99.

[9] Q. Nguyen, M. J. Powell, B. Katz, J. Di Carlo, and S. Kim, “Optimized
jumping on the mit cheetah 3 robot,” in Proc. IEEE Int. Conf. Robot.
Autom., 2019, pp. 7448–7454.

[10] Z. Song, L. Yue, G. Sun, Y. Ling, H. Wei, L. Gui, and Y.-H. Liu, “An
optimal motion planning framework for quadruped jumping,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2022, pp. 11 366–11 373.

[11] M. Chignoli and S. Kim, “Online trajectory optimization for dynamic
aerial motions of a quadruped robot,” in Proc. IEEE Int. Conf. Robot.
Autom., 2021, pp. 7693–7699.

[12] M. Chignoli, S. Morozov, and S. Kim, “Rapid and reliable quadruped
motion planning with omnidirectional jumping,” in Proc. IEEE Int. Conf.
Robot. Autom., 2022, pp. 6621–6627.

[13] Y. Ding, C. Li, and H.-W. Park, “Kinodynamic motion planning for
multi-legged robot jumping via mixed-integer convex program,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2020, pp. 3998–4005.

[14] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” Int. J. Robot. Res., vol. 33,
no. 1, pp. 69–81, 2014.

[15] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp.
1560–1567, 2018.

[16] R. Blickhan, “The spring mass model for running and hopping,” J.
Biomech., vol. 22, no. 11-12, pp. 1217–1227, 1989.

[17] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behaviour
explains basic dynamics of walking and running,” Proc. Royal Soc. B,
vol. 273, no. 1603, pp. 2861–2867, 2006.

[18] P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3d-slip model,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot.
Syst., 2013, pp. 5134–5140.

[19] X. Xiong and A. D. Ames, “Sequential motion planning for bipedal
somersault via flywheel slip and momentum transmission with task space
control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2020, pp.
3510–3517.

[20] D. Calzolari, C. Della Santina, A. M. Giordano, and A. Albu-Schäffer,
“Single-leg forward hopping via nonlinear modes,” in Proc. Am. Control
Conf., 2022, pp. 506–513.

[21] D. Lakatos, C. Rode, A. Seyfarth, and A. Albu-Schäffer, “Design
and control of compliantly actuated bipedal running robots: Concepts
to exploit natural system dynamics,” in Proc. IEEE-RAS Int. Conf.
Humanoid Robots, 2015, pp. 930–937.

[22] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, P. Fankhauser,
and R. Siegwart, “Excitation and stabilization of passive dynamics in
locomotion using hierarchical operational space control,” in Proc. IEEE
Int. Conf. Robot. Autom., 2014, pp. 2977–2982.

[23] G. M. Gasparri et al., “Efficient Walking Gait Generation via Principal
Component Representation of Optimal Trajectories: Application to a
Planar Biped Robot with Elastic Joints,” IEEE Robot. Autom. Lett.,
vol. 3, no. 3, pp. 2299–2306, 7 2018.

[24] C. Della Santina and A. Albu-Schaeffer, “Exciting efficient oscillations
in nonlinear mechanical systems through eigenmanifold stabilization,”
IEEE Control Syst. Lett., vol. 5, no. 6, pp. 1916–1921, 2020.

[25] C. Della Santina, M. Bianchi, G. Grioli, F. Angelini, M. Catalano,
M. Garabini, and A. Bicchi, “Controlling Soft Robots: Balancing Feed-
back and Feedforward Elements,” IEEE Robot. Autom., vol. 24, no. 3,
pp. 75–83, 9 2017.

[26] M. Focchi, A. Del Prete, I. Havoutis, R. Featherstone, D. G. Caldwell,
and C. Semini, “High-slope terrain locomotion for torque-controlled
quadruped robots,” Auton. Robots, vol. 41, no. 1, pp. 259–272, 2017.

[27] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2018, pp.
1–9.

[28] M. J. Pollayil, C. D. Santina, G. Mesesan, J. Englsberger, D. Seidel, and
et. al., “Planning Natural Locomotion for Articulated Soft Quadrupeds,”
in Proc. IEEE Int. Conf. Robot. Autom., 2022, pp. 6593–6599.

[29] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
dynamic systems by learning: A new control theory for servomechanism
or mechatronics systems,” in Proc. IEEE Conf. Decis. Control, 1984, pp.
1064–1069.

[30] F. Angelini, C. Della Santina, M. Garabini, M. Bianchi, G. M. Gasparri,
G. Grioli, M. G. Catalano, and A. Bicchi, “Decentralized trajectory
tracking control for soft robots interacting with the environment,” IEEE
Trans. Robot., vol. 34, no. 4, pp. 924–935, 2018.

[31] R. Mengacci, F. Angelini, M. G. Catalano, G. Grioli, A. Bicchi, and
M. Garabini, “On the motion/stiffness decoupling property of articulated
soft robots with application to model-free torque iterative learning
control,” Int. J. Robot. Res., vol. 40, no. 1, pp. 348–374, 2021.

[32] M. Pierallini, F. Angelini, A. Bicchi, and M. Garabini, “Swing-up
of underactuated compliant arms via iterative learning control,” IEEE
Robot. Autom. Lett., vol. 7, no. 2, pp. 3186–3193, 2022.

[33] C. Della Santina and F. Angelini, “Iterative Learning in Functional Space
for Non-Square Linear Systems,” Proc. IEEE Conf. Decis. Control, vol.
2021-December, pp. 5858–5863, 2021.

[34] H. C. Doets, D. Vergouw, H. E. Veeger, and H. Houdijk, “Metabolic
cost and mechanical work for the step-to-step transition in walking after
successful total ankle arthroplasty,” Hum. Mov. Sci., vol. 28, no. 6, pp.
786–797, 12 2009.

[35] R. J. Li and Z. Z. Han, “Survey of iterative learning control,” Kongzhi
yu Juece/Control and Decision, vol. 20, no. 9, pp. 961–966, 9 2005.

[36] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: a software framework for nonlinear optimization and optimal
control,” Math Program Comput., vol. 11, no. 1, pp. 1–36, 3 2019.

[37] E. Coumans and Y. Bai, “PyBullet, a Python module for physics
simulation for games, robotics and machine learning,” 2021. [Online].
Available: https://pybullet.org/

[38] U. Robotics, “Unitree Go1: https://www.unitree.com/en/go1/,” 2023.
[39] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative

learning control,” IEEE Contr. Syst. Mag., vol. 26, no. 3, pp. 96–114,
2006.

[40] J. Ding, T. L. Lam, L. Ge, J. Pang, and Y. Huang, “Safe and adaptive 3-d
locomotion via constrained task-space imitation learning,” IEEE/ASME
Trans. Mechatron., 2023.

[41] Y. Yang, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots, “Learn-
ing semantics-aware locomotion skills from human demonstration,” in
Conference on Robot Learning. PMLR, 2023, pp. 2205–2214.

[42] G. Bellegarda and Q. Nguyen, “Robust quadruped jumping via deep
reinforcement learning,” arXiv preprint arXiv:2011.07089, 2020.

[43] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath,
“Robust and versatile bipedal jumping control through multi-task rein-
forcement learning,” arXiv preprint arXiv:2302.09450, 2023.

[44] A. Meurer and et. al., “SymPy: Symbolic computing in python,” PeerJ
Comput. Sci., vol. 2017, no. 1, p. e103, 1 2017.

https://pybullet.org/
https://www.unitree.com/en/go1/

	Introduction
	SLIP-inspired Jumping Motion Optimization
	CSBD: bridging the SLIP and Quadruped
	Hybrid reduced-order jumping dynamics
	Flight dynamics
	Stance dynamics

	Topt formulation
	Objective function
	Feasibility constraints

	Iterative Learning-based Jumping Control
	Functional iterative learning control
	Background
	Nonlinear system control

	Controller design
	Learning rule
	Basis functions

	Continuous learning mechanism

	Simulation evaluations
	Setup
	Jumping motion generation
	FILC-based jumping control
	fILC using different basis functions
	fILC vs MPC

	Continuous fILC in PyBullet simulation

	Hardware experiments
	Experimental setup
	Jumping on flat ground
	Robust pronking
	Outdoor uneven terrain
	Slope terrain
	Model and environment uncertainties

	Conclusion
	References

