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Abstract: Reinforcement learning is a powerful tool to derive controllers for systems where no
models are available. Particularly policy search algorithms are suitable for complex systems,
to keep learning time manageable and account for continuous state and action spaces.
However, these algorithms demand more insight into the system to choose a suitable controller
parameterization. This paper investigates a type of policy parameterization for impedance
control that allows energy input to be implicitly bounded: Potential fields. In this work, a
methodology for generating a potential field-constrained impedance controller via approximation
of example trajectories, and subsequently improving the control policy using Reinforcement
Learning, is presented. The potential field-constrained approximation is used as a policy
parameterization for policy search reinforcement learning and is compared to its unconstrained
counterpart. Simulations on a simple biped walking model show the learned controllers are able
to surpass the potential field of gravity by generating a stable limit-cycle gait on flat ground for
both parameterizations. The potential field-constrained controller provides safety with a known

energy bound while performing equally well as the unconstrained policy.
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1. INTRODUCTION

The demand for robot control that is both safe and energy-
efficient is greater than ever with advances in mobile robots
and robots that interact in human environments. One
such example is the bipedal robot which has applications
ranging from home care to disaster relief. Traditional
position control, common to industrial robotics, is not
suitable for robots that interact in unknown environments
because slight position errors can result in high contact
forces that can damage the robot and its environment.
In the case of humanoid robots which interact in human
environments this poses a human-safety issue.

One possible solution is to employ impedance control,
which attempts to enforce a dynamic relation between
system variables as opposed to controlling them directly
(Hogan (1984)). Impedance control based on potential
fields inherently bounds the energy exchanged between the
robot and the environment. Potential fields can modulate
natural dynamics of a system and achieve desired be-
havior without requiring high-stiffness trajectory tracking.
Potential fields have been developed for path planning
and motion control by reformulating the objective into a
potential function (Koditschek (1987)). Control torques
can be represented as a vector field generated by the
gradient of the potential field, such that the dimensionality
of any number of actuators is essentially reduced to one,
the scalar value of the potential function.

Contrasting the high energy demand of conventional, fully
actuated bipedal robots, passive dynamic walkers have

been developed that walk down shallow slopes using only
gravity and the robot’s natural dynamics (McGeer (1990)).
Thus, these mechanisms exploit the natural potential field
of gravity. In consequence, they possess an extremely
energy-efficient gait that is remarkably similar to that of
humans. The stable periodic gait of a passive dynamic
walker is referred to as a Limit Cycle (LC). Rendering
this gait slope-invariant and improving its disturbance
rejection has been the focus of many publications including
Hobbelen and Wisse (2007). For example, walking of the
so-called simplest walker on flat terrain can be achieved
by emulating a slanted artificial gravity field via robot
actuators (Asano and Yamakita (2001)). This is a very
special case of a potential field.

The design and parameterization of more generic poten-
tial fields remains challenging, particularly for systems
that exhibit modeling uncertainties or are subjected to
unknown disturbances. Reinforcement learning (RL) is a
powerful technology to derive controllers for systems where
no models are available. Policy search RL methods, also
known as actor-only methods, have been found effective
for robotic applications due to their ability to handle
higher dimensionality and continuous state and action
spaces compared to Value-based RL methods (Kober et al.
(2013)). Furthermore, policy search methods have been
effectively implemented on bipedal robots (Tedrake et al.
(2004)).

In this work, we propose to combine RL and PF-
constrained impedance control to improve robot safety for
robots that operate in uncertain conditions because:



e PF-constraint provides safety with a known energy
bound

e RL provides controllers for systems with modeling un-
certainty.

The question arises, can policy search RL be combined

with potential fields to achieve LC walking? While the

theoretical advantage of a PF-constrained impedance con-

trol, specifically energy boundedness, are presented in lit-

erature, the sub-question arises, are there limitations when

it comes to RL convergence?

As a first step towards answering these questions, this
paper presents a methodology for defining a potential field-
constrained (PF-constrained) impedance control and im-
proving it via reinforcement learning. To achieve this, we
define an impedance control as a parameterized mapping
of configurations to control torques, which is analogous
to a policy in Reinforcement Learning (RL) algorithms.
A PF-constrained and an unconstrained parameterization
of an impedance controller are compared before and after
RL applied to the bipedal walking problem. These control
methods are compared for three cases: the reference case
of the simplest walking model (SWM), the slope-modified
case of the SWM on flat ground, and the mass-modified
case, of the SWM with modified foot mass on flat ground.

2. IMPEDANCE CONTROL INITTALIZATION

As opposed to conventional set-point control approaches
that directly control system variables such as position and
force, impedance control attempts to enforce a dynamic
relation between these variables (Hogan (1984)). In this
section, an impedance controller is derived for a fully
actuated robot with n Degrees Of Freedom (DOF) using
least squares optimization. We assume an accurate model
of the robot as well as the ability to measure the position
and torque at each joint as well as full collocated actuation.
Each configuration of the robot can be described by a
unique vector ¢ = [q1,q2,...,qn]? where g,, with index
i = 1...n, are the generalized coordinates.
. . T
If a desired trajectory, & = (qT,qT, qT) , is known,
the idealistic control torques, 7¢, required to achieve this
trajectory can be found using inverse dynamics. A function
to approximate the torques applied to the system as a
function of the robot’s configuration, 7(g) € R™, can be
found by solving the least squares problem
s
min Y |70 k(@) — 7(gx; w)|? (1)
w
k=1

where ¢ () is a set of training data with S samples.

For the unconstrained case with n degrees of freedom, the
vector function 7(q; w% is defined in terms of its compo-
nents 7;(q; w;) = g,(q)" w;, each of which is approximated
by a set of normalized radial basis functions (RBF) g,(q)
and corresponding weights w;, i = 1...n.

For the constrained case, function 7(q) is restricted to
describe a potential field by enforcing that its work is zero
for any closed-path trajectory. This implies the control
torques are a function of the joint variables q and are
defined as the negative gradient of a potential function
¥(gq;w) = g(q)Tw with respect to q:
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T(gw) = —Vo(g;w) = — “9aq w
q
This is similar to the method of Generalized Elasticities
presented in Vallery et al. (2009a) and Vallery et al.
(2009b). For the RBF g(q) we choose to use compactly
supported radial basis functions which allow for the use of
a minimal number of center points in the neighborhood of
the robot’s position to sufficiently compute the function
value. This reduces the computational resources needed
during operation.

3. POLICY SEARCH REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a machine learning
method which attempts to find a control policy, 7 (u|z, w),
which maps states « to actions w. For policy search algo-
rithms, the policy is parameterized by a weighting vector
w. The policy is analogous to the impedance control laws
derived in the previous section where generalized coordi-
nates q are states and control torques 7 are actions.

The policy space is explored by randomly perturbing the
weighting vector w. Batch exploration is performed where
the policy is independently perturbed from the initial
policy a set number of times. The perturbed policies
are then evaluated by computing the expected return
J = E{ZhH:O Ry}, which is a sum of the expected
reward R over the finite-horizon H. Episode-based policy
evaluation uses the entire episode to assess the quality of
the policy used directly (Deisenroth et al. (2011)). The
policy is updated with the objective to find a policy which
maximizes the expected return. We use the Expectation
Maximization Policy learning by Weighted Exploration
with the Returns (PoOWER) method developed in Kober
and Peters (2011).

4. APPLICATION TO LC WALKING
4.1 Simplest Walking Model

The simplest walking model (SWM) developed in Garcia
et al. (1998) is often used as a tool to study the paradigm
of Bipedal Limit-Cycle walking and is detailed in the
following sections. A diagram of the SWM is shown in
Fig. 1.

The model consists of two massless rigid links of length L
connected at the hip by a frictionless hinge. The mass is
distributed over three point masses at the hip and feet such

g “RY 8T AW
g (m/s2) 10.000 10.000 10.000

L (m) 1.000 1.000 1.000

my (kg) 1.000 1.000 1.000

Tel, ms (kg)  0.001 0.001 0.010
i v (rad)  0.004 0.000 0.000

Fig. 1. Diagram of the Simplest Walking Model (SWM)
and its parameters for Reference (“R”), Slope-
modified (“S”) and Mass-modified (“M”) cases.



that the hip mass my, is much larger than the foot mass
my¢. The model is situated on a slope of angle v and acts
only under the force of gravity with acceleration constant
g. The configuration of the model is given by the ankle
angle 6 and hip angle ¢. The generalized coordinates are
q = (Te,Ye,0,0)T where the subscripts “c” denotes the
contact point of the stance foot with the ground.

The training data was found by first, scanning the initial
conditions (g, q) for cases in which the SWM converges
to an LC and then the associated accelerations g were
found using inverse dynamics. The ankle angle was varied
between 0.1 and 0.2rad with a step size of 0.005rad, and
the initial hip angle was set to twice that of the ankle
so the model initializes in double support phase. The
initial ankle angular velocity was varied between —0.68
and —0.38rads™! with a step size of 0.005rads™!, and
the initial hip angular velocity was set to Orads™!. The
torques Tg found from training data can be used to solve
the least-squares problem in (1) using the recursive least-
squares method described in Sec. 2 resulting in impedance
control laws of the form 7(q; w).

4.2 Reinforcement Learning

The resulting impedance control laws 7(g; w) parameter-
ized by vector w are specific to the simplest walking model
case and will likely not be effective if the model is modified
or more degrees of freedom are added. If this is the case
7(q; wp) parameterized by vector wg can be used as the
initial policy for policy search RL. The policy search with
episode-based evaluation strategy described in Sec. 3 can
be used where one episode is H steps of the biped. For a
biped robot, the state transitions from the previous state
x to the next state x’ caused by actions u can be modeled
by solving the equations of motion using iterative methods

.\T .
where = (g7, ¢")  are the states and the generalized
forces Qg, Q¢ are the actions u.

The reward function used for each step is
Rp(z,u) =Rstep — Ral|A0|] — RA||A9||
= Ril[th — tol| = RrgllToll — RrgllToll

where A0 = Gh—ﬁh_l, and Af = Gh—ﬁh_l, and Rstep = 1,
Ra = 10rad™', Ry = 10srad™?, Ry = 1s™', R,y =
I0N"'m~! and R, s = 100N~'m™! are constants. The
first term of the reward function is given as a reward for
successfully completing a step. The second term penalizes
the change in angle and angular velocity of the stance leg
at the beginning of each step. This is to encourage a limit-
cycle is reached where each step is the same. The third
term penalized the change in time of step i from the time
of the reference LC step tg = 1.2180s. The fourth term
penalizes the magnitude of the control torques to minimize
the energy added to the system.

5. EVALUATION PROTOCOL
5.1 Implementation

The impedance control laws were implemented on a fully-
actuated simple walking model for the three cases: the
reference case on a slope, the slope-modified case on flat

ground, and the mass-modified case, of the SWM with
modified foot mass on flat ground, cf. Fig. 1.

For the least squares optimization, 50 RBFs were used.
The center locations were determined using a grid step
size of 0.05rad for the ankle angle and 0.1rad for the hip
angle in the area of the ideal trajectory of the SWM.

For the policy search RL, a horizon of H = 10 was
used corresponding to 10 steps of the robot. For the
exploration strategy, a batch size of 100 iterations was
used. A Gaussian exploration € ~ N(0, 0%) was used which
was decreasing linearly over episodes.

5.2 Experiment Setup

Initial unconstrained and PF-constrained impedance con-
trollers were found using inverse dynamics for each of
the three cases described above. For the Slope and Mass-
modified cases, RL was used to attempt to improve the
policy for both the unconstrained and the PF-constrained
parameterizations. For the reference case, the performance
of the controllers can not be improved further using RL
based on the evaluation strategy since the control torques
cannot decrease further.

5.8 Benchmarking Criteria

The unconstrained and PF-constrained impedance con-
trollers were compared for each of the three cases based
on the following benchmarking criteria.

Work and Energy: The energy of the LC of the ideal
SWM (unactuated and on a slope) is bounded by the po-
tential field of gravity. The energy bound can be measured
as the maximum energy, F of the LC, defined E=V + T
where V' is the potential energy and T is the kinetic energy.
For the LC of the ideal SWM, the total energy is constant
at 10.0108 J. At each step kinetic energy is dissipated at
impact and an equivalent amount of potential energy is
added by the slope. The energy added/dissipated at each
step is equivalent to 0.0166 J.

Energy consumption can be measured for the actuated
model as the work done by the actuators W = f:gl 7d0,

where g, is the configuration at the beginning of the step
and g, is the configuration at the end of the step.

Robustness: ~ The robustness of an LC gait can be mea-
sured by its velocity disturbance rejection. An angular
velocity disturbance is introduced to the stance leg at the
beginning of the first step and the maximum disturbance
that can be applied without causing the walker to fall is
used as a measure for robustness.

RL Performance: The performance of the RL is assessed
by plotting the mean performance over the episodes, for
several trials, and observing how many episodes it takes
to level off.

6. RESULTS
6.1 Reference case

The trajectories for the Unconstrained and PF-constrained
policies were derived using inverse dynamics. The bench-
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Fig. 2. Trajectory phase plot of the initial (a) Uncon-
strained and (b) PF-constrained policies for the Slope-
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Fig. 3. Control torques and energy of one LC step of
the initial (a) Unconstrained and (b) PF-constrained
policies for the Slope-modified Case.

marking criteria for the energy, work and robustness of the
reference case are specified in Table 1.

6.2 Slope-modified Case

Initialization  The trajectory phase plots for the initial
Unconstrained and PF-constrained policies for the Slope-
modified case are shown in Fig. 2 (a) and (b) respec-
tively. The control torques and total energy for the initial
Unconstrained and PF-constrained policies for the Slope-
modified case are shown in Fig. 3 (a) and (b) respectively.

Reinforcement Learning The mean performance of the
RL for the Unconstrained and PF-constrained controllers
are shown in Fig. 4. The resulting trajectory phase plot
for the learned Unconstrained and PF-constrained policies
for the Slope-modified case are shown in Fig. 5 (a) and (b)
respectively. The resulting control torques and energy for
the learned Unconstrained and PF-constrained policies for
the Slope-modified case are shown in Fig. 6 (a) and (b)
respectively.

The benchmarking criteria for the energy, work and ro-
bustness of the Slope-modified case are specified in Table 1.

RL Performance for Slope-modified Case
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Fig. 4. Mean performance of the RL for the Unconstrained
and PF-constrained policies for the Slope-modified
case averaged over 10 runs with the error bars in-
dicating the standard deviation. For both policies the
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Fig. 5. Trajectory phase plot of the learned (a) Uncon-
strained and (b) PF-constrained policies for the Slope-
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Fig. 6. Control torques and energy of one LC step of
the learned (a) Unconstrained and (b) PF-constrained
policies for the Slope-modified Case

6.3 Mass-modified Case

Initialization ~ For the Mass-modified case neither the
initial Unconstrained nor initial PF-constrained policy
leads to a stable limit cycle so the corresponding plots
are not shown.



RL Performance for Mass-modified Case
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Fig. 7. RL mean performance of the Unconstrained and
PF-constrained policies for the Mass-modified case
averaged over 10 runs with the error bars indicating
the standard deviation. For the Unconstrained policy
the exploration variance decreased from 1le-5 to le-
10 and for the PF-constrained policy the variance
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Fig. 8. Trajectory phase plot of the learned (a) Uncon-
strained and (b) PF-constrained policies for the Mass-
modified Case.

Reinforcement Learning The mean performance of the
RL for both the PF-constrained and unconstrained case
are shown in Fig. 7. The resulting trajectory phase plots
for the learned Unconstrained and PF-constrained policies
for the Mass-modified case are shown in Fig. 8 (a) and (b)
respectively. The resulting control torques and energy for
the learned Unconstrained and PF-constrained policies for
the Mass-modified case are shown in Fig. 9 (a) and (b)
respectively.

The benchmarking criteria for the work, energy and ro-
bustness of the Mass-modified case are specified in Table 1.

7. DISCUSSION

For the reference case for both the unconstrained and
PF-constrained parameterization the controlled trajectory
perfectly follows the ideal trajectory. No actuator torques
are generated and the total energy is equal to 10.011 J. It
can be seen in Table 1 that both controllers have the same
energy bound and maximum disturbance rejection as the
unactuated ideal case. This serves as a validation for both
the impedance controllers derived using inverse dynamics
and least squares optimization.

For the slope-modified case, the initial impedance con-
trollers, for both PF-constrained and unconstrained pa-
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Fig. 9. Control torques and energy of one LC step of
the learned (a) Unconstrained and (b) PF-constrained
policies for the Mass-modified Case.

Table 1. Summary of Results. In the table
“EB” stands for “Energy bound”, and “MVD”
stands for “Maximum velocity disturbance”.

Case Parameter- Benchmarking Initial Learned
’ ization Criteria ‘ Policy ‘ Policy ‘

o EB (J) 10.011 7

g Unconstrained Work (J) 0.000 -

g MVD (rad/s) -0.050 -

& EB (J) 10.011 -

é) PF-constrained Work (J) 0.000 -

MVD (rad/s) -0.050 -

EB (J) 10.017 10.026

9 Unconstrained Work (J) 1.507 1.488

2 € MVD (rad/s) 0.050 0.030

2 3 EB (J) 10.019 10.019

g PF-constrained Work (J) 1.495 1.332

MVD (rad/s) -0.060 0.000

EB (J) X 10.215

\ '8 Unconstrained ‘Work (J) X 1.311

ﬁ E MVD (rad/s) X -0.050

s EB (J) X 10.062

g PF-constrained Work (J) X 1.481

MVD (rad/s) X -0.020

rameterization, allow the biped to achieve an LC gait on
a flat surface (v = Orad) as can be seen in the trajectory
phase plots in Fig. 2. It can be seen in Table 1 that the
velocity disturbance rejections are comparable to the ideal
SWM, however, the energy bound is higher than the ideal
case for both controllers. The work done by the actuators
is similar for both controllers, however, it is almost 100
times the work done by gravity in the ideal case.

As can be seen in Table 1, RL of the initial impedance
controllers for the slope-modified case increases the energy
bound for both controllers, while decreasing the work done
by the actuators. RL also leads to decreased disturbance
rejection. As can be seen in Fig. 4, the performance of
the unconstrained parameterization levels off before the
PF-constrained parameterization, indicating the uncon-
strained parameterization achieves a higher performance
with less episodes compared to the PF-constrained param-
eterization.

For the mass-modified case, the initial impedance con-
trollers, for both PF-constrained and unconstrained pa-
rameterizations, do not allow the biped to achieve an
LC gait. The impedance controllers derived from inverse



dynamics appear not to be able to compensate for the
modified dynamics of the model. However, RL of these
initial policies allows the biped to achieve an LC gait as
shown in Fig. 8. This validates the use of RL for achieving
an LC gait. As can be seen in Table 1, for both controllers
the energy bound and work done is greater than the ideal
case. While the robustness of the unconstrained controller
is comparable to the ideal case, it is reduced for the
PF-constrained controller. As can be seen in Fig. 7, the
performance of the unconstrained parameterization levels
off before the PF-constrained parameterization.

For all cases, the energy bound and work done by the
actuators was similar for both the PF-constrained and un-
constrained controllers. As the implementation of the RL
did not converge to a single optimal solution, the variance
in the resulting energy and work was too large to draw an
accurate comparison. For all cases, there are no improve-
ments to the robustness of the limit-cycle against velocity
disturbances. The reason for this is that the episode (con-
sisting of H steps of the limit-cycle) is a black-box from
the perspective of the episode-based RL. Learning is based
only on the inputs and outputs of the episode, therefore
any unknown disturbances throughout the episode are
not accounted for, and consequently the robustness is not
improved by the RL. Exploring and learning throughout
the episode may be one way to improve the robustness.
Additionally, learning could take place in an unknown
environment with unknown disturbances.

The scope of these results is limited by the variables of
the simple walking model used. The only modifications
tested were the ratio of the hip mass to foot mass, and the
slope . An interesting observation is the learned behavior
of “swing-leg retraction” seen in the learned policy for both
cases, as shown in Fig. 5 and 8 . This is when the swing leg
retracts at the end of a step until it hits the ground. It has
been shown in Hobbelen and Wisse (2008) that swing-leg
retraction can improve disturbance rejection.

8. CONCLUSION AND FUTURE WORK

In this work we successfully combined potential field
control and reinforcement learning to achieve limit-cycle
walking for a simple walking model. A limit-cycle was
achieved on flat ground, and for a modified hip to foot
mass ratio. The results demonstrate that a potential field
controller can not only “emulate” the effect of gravity on
the simple walking model, but also improve its perfor-
mance if reinforcement learning is applied. The potential
field-constrained controller provides safety by bounding
the energy while performing equally well compared to
an unconstrained controller. The performance of the RL
leveled off faster for the unconstrained case.

Achieving a limit cycle gait on a SWM is trivial compared
to more complex models. In future work the method pre-
sented in this paper could be applied to higher degree of
freedom models. A strength of this method is the ability
to bound the energy of the controlled system. In future
work it could be explored how to enforce a desired energy

bound. Improved tuning of the RL exploration and eval-
uation strategy could lead to improved policies and more
conclusive results for the comparison of the unconstrained
and PF-constrained parameterizations. More advanced RL
methods could lead to potential fields that further improve
performance and even increase robustness.

ACKNOWLEDGEMENTS

I. Koryakovskiy and H. Vallery were supported by the
European project KOROIBOT FP7-ICT-2013-10/6119009.

REFERENCES

Asano, F. and Yamakita, M. (2001). Virtual gravity and
coupling control for robotic gait synthesis. IEEE Trans.
Systems, Man, and Cybernetics Part A: Systems and
Humans, 31(6), 737-745.

Deisenroth, M.P., Neumann, G., and Peters, J. (2011). A
Survey on Policy Search for Robotics. Foundations and
Trends in Robotics, 2, 1-142.

Garcia, M., Chatterjee, A., Ruina, A., and Coleman,
M. (1998). The Simplest Walking Model: Stability,
Complexity, and Scaling. Journal of Biomechanical
Engineering, 120(2), 281-288.

Hobbelen, D.G.E. and Wisse, M. (2007). Limit Cycle
Walking. Humanoid Robots: Human-like Machines, 642—
659.

Hobbelen, D.G.E. and Wisse, M. (2008). Swing-leg re-
traction for limit cycle walkers improves disturbance
rejection. Trans. Robotics, 24(2), 377-389.

Hogan, N. (1984). Impedance control: An approach to
manipulation. In American Control Conf..

Hyon, S.H. and Cheng, G. (2006). Passivity-based full-
body force control for humanoids and application to
dynamic balancing and locomotion. In Int. Conf. In-
telligent Robots and Systems.

Kober, J., Bagnell, J.A., and Peters, J. (2013). Reinforce-
ment learning in robotics: A survey. Int. Journal of
Robotics Research, 32, 1238-1274.

Kober, J. and Peters, J. (2011). Policy search for motor
primitives in robotics. Machine Learning, 84(1-2), 171
203.

Koditschek, D.E. (1987). Exact robot navigation by means
of potential functions: Some topological considerations.
In Int. Conf. Robotics and Automation.

McGeer, T. (1990). Passive Dynamic Walking. Int.
Journal of Robotics Research, 9(2), 62-82.

Papageorgiou, M. (2012). Optimierung: statische, dy-
namische, stochastische Verfahren. Springer-Verlag.

Tedrake, R., Zhang, T., and Seung, H. (2004). Stochastic
policy gradient reinforcement learning on a simple 3D
biped. In Int. Conf. Intelligent Robots and Systems.

Vallery, H., Duschau-Wicke, A., and Riener, R. (2009a).
Generalized elasticities improve patient-cooperative
control of rehabilitation robots. In Int. Conf. on Re-
habilitation Robotics.

Vallery, H., Duschau-Wicke, A., and Riener, R. (2009b).
Optimized passive dynamics improve transparency of
haptic devices. In Int. Conf. Robotics and Automation.





