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Abstract—Dynamic system-based motor primitives [1] have
enabled robots to learn complex tasks ranging from Tennis-
swings to locomotion. However, to date there have been only
few extensions which have incorporated perceptual coupling to
variables of external focus, and, furthermore, these modifications
have relied upon handcrafted solutions. Humans learn how
to couple their movement primitives with external variables.
Clearly, such a solution is needed in robotics.

In this paper, we propose an augmented version of the dynamic
systems motor primitives which incorporates perceptual coupling
to an external variable. The resulting perceptually driven motor
primitives include the previous primitives as a special case and
can inherit some of their interesting properties. We show that
these motor primitives can perform complex tasks such a Ball-in-
a-Cup or Kendama task even with large variances in the initial
conditions where a skilled human player would be challenged. For
doing so, we initialize the motor primitives in the traditional way
by imitation learning without perceptual coupling. Subsequently,
we improve the motor primitives using a novel reinforcement
learning method which is particularly well-suited for motor
primitives.

I. INTRODUCTION

The recent introduction of motor primitives based on dy-

namic systems [1], [2], [3], [4] have allowed both imitation

learning and Reinforcement Learning to acquire new behaviors

fast and reliable. Resulting successes have shown that it

is possible to rapidly learn motor primitives for complex

behaviors such as tennis swings [1], [2], T-ball batting [5],

drumming [6], biped locomotion [3], [7] and even in tasks

with potential industrial application [8]. However, in their

current form these motor primitives are generated in such a

way that they are either only coupled to internal variables [1],

[2] or only include manually tuned phase-locking, e.g., with

an external beat [6] or between the gait-generating primitive

and the contact time of the feet [3], [7]. In many human motor

control tasks, more complex perceptual coupling is needed in

order to perform the task. Using handcrafted coupling based

on human insight will in most cases no longer suffice.

In this paper, it is our goal to augment the Ijspeert-

Nakanishi-Schaal approach [1], [2] of using dynamic systems

as motor primitives in such a way that it includes perceptual

coupling with external variables. Similar to the biokinesiolog-

ical literature on motor learning (see e.g., [9]), we assume

that there is an object of internal focus described by a state

x and one of external focus y. The coupling between both

foci usually depends on the phase of the movement and,

sometimes, the coupling only exists in short phases, e.g., in a

catching movement, this could be at initiation of the movement

(which is largely predictive) and during the last moment when

the object is close to the hand (which is largely prospective

or reactive and includes movement correction). Often, it is

also important that the internal focus is in a different space

than the external one. Fast movements, such as a Tennis-swing,

always follow a similar pattern in joint-space of the arm while

the external focus is clearly on an object in Cartesian space

or fovea-space. As a result, we have augmented the motor

primitive framework in such a way that the coupling to the

external, perceptual focus is phase-variant and both foci y and

x can be in completely different spaces.

Integrating the perceptual coupling requires additional func-

tion approximation, and, as a result, the number of parameters

of the motor primitives grows significantly. It becomes in-

creasingly harder to manually tune these parameters to high

performance and a learning approach for perceptual coupling

is needed. The need for learning perceptual coupling in motor

primitives has long been recognized in the motor primitive

community [4]. However, learning perceptual coupling to an

external variable is not as straightforward. It requires many

trials in order to properly determine the connections from

external to internal focus. It is straightforward to grasp a

general movement by imitation and a human can produce

a Ball-in-a-Cup movement or a Tennis-swing after a single

or few observed trials of a teacher but he will never have

a robust coupling to the ball. Furthermore, small differences

between the kinematics of teacher and student amplify in the

perceptual coupling. This part is the reason why perceptually

driven motor primitives can be initialized by imitation learning

but will usually require self-improvement by reinforcement

learning. This is analogous to the case of a human learning

tennis: a teacher can show a forehand but a lot of self-practice

is needed for a proper tennis game.

II. AUGMENTED MOTOR PRIMITIVES WITH PERCEPTUAL

COUPLING

In this section, we first introduce the general idea be-

hind dynamic system motor primitives as suggested in [1],

[2] and, subsequently, show how perceptual coupling can

be introduced. Subsequently, we show how the perceptual

coupling can be realized by augmenting the acceleration-based

framework from [4].

A. Perceptual Coupling for Motor Primitives

The basic idea in the original work of Ijspeert, Nakanishi

and Schaal [1], [2] is that motor primitives can be parted into
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Figure 1. Illustration of the behavior of the motor primitives (i) and the
augmented motor primitives (ii).

two components, i.e., a canonical system h which drives trans-

formed systems gk for every considered degree of freedom k.

As a result, we have system of differential equations given by

ż = h(z), (1)

ẋ = g(x, z,w), (2)

which determines the variables of internal focus x. Here, z
denotes the state of the canonical system and w the inter-

nal parameters for transforming the output of the canonical

system. The schematic in Figure 2 illustrates this traditional

setup in black. In Section II-B, we will discuss good choices

for these dynamical systems as well as their coupling based

on the most current formulation [4].

When taking an external variable y into account, there are

three different ways how this variable influences the motor

primitive system which one can consider, i.e., (i) it could only

influence Eq.(1) which would be appropriate for synchroniza-

tion problems and phase-locking (similar as in [6], [10]), (ii)

only affect Eq.(2) which allows the continuous modification

of the current state of the system by another variable and (iii)

the combination of (i) and (ii). While (i) and (iii) are the right

solution if phase-locking or synchronization are needed, the

coupling in the canonical system will destroy many of the nice

properties of the system and make it prohibitively hard to learn

in practice. Furthermore, as we focus on discrete movements

in this paper, we focus on the case (ii) which has not been used

to date. In this case, we have a modified dynamical system

ż = h(z), (3)

ẋ = ĝ(x,y, ȳ, z,v), (4)

˙̄y = g(ȳ, z,w), (5)

where y denotes the state of the external variable, ȳ the

expected state of the external variable and ˙̄y its derivative. This

architecture inherits most positive properties from the original

work while allowing the incorporation of external feedback.

We will show that we can incorporate previous work with ease

and that the resulting framework resembles the one in [4] while

allowing to couple the external variables into the system.

B. Realization for Discrete Movements

The original formulation in [1], [2] was a major break-

through as the right choice of the dynamical systems in
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Figure 2. General schematic illustrating both the original motor primitive
framework by [2], [4] in black and the augmentation for perceptual coupling
in red.

Equations (1, 2) allows determining the stability of the move-

ment, choosing between a rhythmic and a discrete movement

and is invariant under rescaling in both time and movement

amplitude. With the right choice of function approximator

(in our case locally-weighted regression), fast learning from

a teachers presentation is possible. In this section, we first

discuss how the most current formulation from the motor

primitives as discussed in [4] is instantiated from Section II-A.

Subsequently, we show how it can be augmented in order to

incorporate perceptual coupling.

While the original formulation in [1], [2] used a second-

order canonical system, it has since then been shown that a

single first order system suffices [4], i.e., we have

ż = h(z) = −ταhz,

which represents the phase of the trajectory. It has a time

constant τ and a parameter αh which is chosen such that

the system is stable. We can now choose our internal state

such that position of degree of freedom k is given by

qk = x2k, i.e., the 2k-th component of xi, the velocity by

q̇k = τx2k+1 = ẋ2k and the acceleration by q̈k = τ ẋ2k+1.

Upon these assumptions, we can express the motor primitives

function g in the following form

ẋ2k+1 = ταg (βg (tk − x2k) − z)

+ τ
((

tk − x0
2k

)

+ ak

)

fk, (6)

ẋ2k = τx2k+1. (7)

This function has the same time constant τ as the canonical

system, appropriately set parameters αg , βg , a goal parameter

tk, an amplitude modifier ak, and a transformation function

fk. This transformation function transforms the output of the

canonical system so that the transformed system can represent

complex nonlinear patterns and is given by

fk (z) =
N

∑

i=1

ψi(z)wizk, (8)

where w are adjustable parameters and uses normalized Gaus-



sian kernels without scaling such as

ψi =
exp

(

−hi (z − ci)
2
)

∑N

j=1
exp

(

−hj (z − cj)
2
) (9)

for localizing the interaction in phase space where we have

centers ci and width hi.

In order to learn a motor primitive with perceptual coupling,

we need two components. First, we need to learn the normal

or average behavior ȳ of the variable of external focus y
which can be represented by a single motor primitive ḡ,

i.e., we can use the same type of function from Equations

(2, 5) for ḡ which are learned based on the same z and

given by Equations (6, 7). Additionally, we have the system

ĝ for the variable of internal focus x which determines our

actual movements which incorporates the inputs of the normal

behavior ȳ as well as the current state y of the external

variable. We obtain the system ĝ by inserting a modified

coupling function f̂k(z,y, ȳ) instead of the original fk(z) in

g. This new function f̂k(z,y, ȳ) in order to include perceptual

coupling to y and obtain

f̂k (z,y, ȳ) =
N

∑

i=1

ψi(z)ŵizk

+
M
∑

j=1

ψ̂j(z)
(

κT
jk(y − ȳ) + δT

jk(ẏ − ˙̄y)
)

,

where ψ̂j(z) denote Gaussian kernels as in Equation (9)

with centers ĉj and width ĥj . Note, that it can be useful

to set N > M for reducing the number of parameters. All

parameters are given by v = [ŵ,κ, δ]. Here, ŵ are just

the standard transformation parameters while κjk and δjk are

the local coupling factors which can be interpreted as gains

acting on the difference between the desired behavior of the

external variable and its actual behavior. Note that for noise-

free behavior and perfect initial positions, such coupling would

never play a role; thus, the approach would simplify to the

original approach. However, in the noisy, imperfect case, this

perceptual coupling can ensure success even in extreme cases.

III. LEARNING FOR PERCEPTUALLY COUPLED MOTOR

PRIMITIVES

While the transformation function fk(z) can be learned

from few or even just a single trial, this simplicity no longer

transfers to learning the new function f̂k(z,y, ȳ) as perceptual

coupling requires that the coupling to an uncertain external

variable is learned. While imitation learning approaches are

feasible, they require larger numbers of presentations of a

teacher with very similar kinematics for learning the behavior

sufficiently well. As an alternative, we could follow “Nature

as our teacher”, and create a concerted approach of imitation

and self-improvement by trial-and-error. For doing so, we first

have a teacher who presents several trials and, subsequently,

we improve our behavior by reinforcement learning.

A. Imitation Learning with Perceptual Coupling

For imitation learning, we can largely follow the original

work in [1], [2] and only need minor modifications. We also

make use of locally-weighted regression in order to determine

the optimal motor primitives, use the same weighting and

compute the targets based on the dynamic systems. However,

unlike in [1], [2], we need a bootstrapping step as we deter-

mine first the parameters for the system described by Equation

(5) and, subsequently, use the learned results in the learning of

the system in Equation (4). For doing so, we can compute the

regression targets for the first system by taking Equation (6) ,

replacing ȳ and ˙̄y by samples of y and ẏ, and solving for fk(z)
as discussed in [1], [2]. A local regression yields good values

for the parameters of fk(z). Subsequently, we can perform

the exact same step for f̂k(z,y, ȳ) where only the number

of variables has increased but the resulting regression follows

analogously. However, note that while a single demonstration

suffices for the parameter vector w and ŵ, the parameters κ

and δ cannot be learned by imitation as these require deviation

from the nominal behavior for the external variable.

However, as discussed before, pure imitation for perceptual

coupling can be difficult for learning the coupling parameters

as well as the best nominal behavior for a robot with kinemat-

ics different from the human, many different initial conditions

and in the presence of significant noise. Thus, we suggest

to improve the policy by trial-and-error using reinforcement

learning upon an initial imitation.

B. Reinforcement Learning for Perceptually Coupled Motor

Primitives

Reinforcement learning [11] of discrete motor primitives

is a very specific type of learning problem where it is hard

to apply generic reinforcement learning algorithms [5], [12].

For this reason, the focus of this paper is largely on domain-

appropriate reinforcement learning algorithms which operate

on parametrized policies for episodic control problems.

1) Reinforcement Learning Setup: When modeling our

problem as a reinforcement learning problem, we always have

a state s = [z,y, ȳ,x] with high dimensions (as a result,

standard RL methods which discretize the state-space can no

longer be applied), and the action a = [f (z)+ǫ, f̂k(z,y, ȳ)+
ǫ̂] is the output of our motor primitives. Here, the exploration

is denoted by ǫ and ǫ̂, and we can give a stochastic policy

a ∼ π(s) as distribution over the states with parameters

θ = [w,v] ∈ R
n. After a next time-step δt, the actor transfers

to a state st+1 and receives a reward rt. As we are interested

in learning complex motor tasks consisting of a single stroke

[9], [4], we focus on finite horizons of length T with episodic

restarts [11] and learn the optimal parametrized policy for such

problems. The general goal in reinforcement learning is to

optimize the expected return of the policy with parameters θ

defined by

J(θ) =

∫

T

p(τ )R(τ )dτ , (10)

where τ = [s1:T+1,a1:T ] denotes a sequence of states

s1:T+1 = [s1, s2, . . ., sT+1] and actions a1:T = [a1,



Figure 3. This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned robot motion as well as a motion-captured human motion.
The green arrows show the directions of the momentary movements. The human cup motion was taught to the robot by imitation learning with 91 parameters
for 1.5 seconds. Also see the supplementary video in the proceedings.

a2, . . ., aT ], the probability of an episode τ is denoted

by p(τ ) and R(τ ) refers to the return of an episode τ .

Using Markov assumption, we can write the path distribution

as p(τ ) = p(x1)
∏T+1

t=1
p(st+1|st,at)π(at|st, t) where p(s1)

denotes the initial state distribution and p(st+1|st,at) is the

next state distribution conditioned on last state and action.

Similarly, if we assume additive, accumulated rewards, the

return of a path is given by R(τ ) = 1

T

∑T

t=1
r(st,at, st+1, t),

where r(st,at, st+1, t) denotes the immediate reward.

While episodic Reinforcement Learning (RL) problems with

finite horizons are common in motor control, few methods

exist in the RL literature (c.f., model-free method such as

Episodic REINFORCE [13] and the Episodic Natural Actor-

Critic eNAC [5] as well as model-based methods, e.g., using

differential-dynamic programming [14]). In order to avoid

learning of complex models, we focus on model-free methods

and, to reduce the number of open parameters, we rather use

a novel Reinforcement Learning algorithm which is based on

expectation-maximization. Our new algorithm is called Policy

learning by Weighting Exploration with the Returns (PoWER)

and can be derived from the same higher principle as previous

policy gradient approaches, see [15] for details.

2) Policy learning by Weighting Exploration with the Re-

turns (PoWER): When learning motor primitives, we in-

tend to learn a deterministic mean policy ā = θTµ(s) =
[f (z) , f̂k(z,y, ȳ)] which is linear in parameters θ and aug-

mented by additive exploration ε(s, t) = [ǫ̂, ǫ] in order

to make model-free reinforcement learning possible. As a

result, the explorative policy can be given in the form

a = θTµ(s, t) + ǫ(µ(s, t)). Previous work in [5], [12] has

focused on state-independent, white Gaussian exploration, i.e.,

ǫ(µ(s, t)) ∼ N (0,Σ), and has resulted into applications

such as T-Ball batting [5] and operational space control [12].

However, such unstructured exploration at every step has

several disadvantages, i.e., (i) it causes a large variance which

grows with the number of time-steps [5], (ii) it perturbs actions

too frequently, thus, ‘washing’ out their effects and (iii) can

damage the system executing the trajectory.

Alternatively, one could generate a form of structured, state-

dependent exploration ǫ(µ(s, t)) = εT
t µ(s, t) with [εt]ij ∼

N (0, σ2
ij), where σ2

ij are meta-parameters of the exploration

that can also be optimized. This argument results into the

policy a ∼ π(at|st, t) = N (a|µ(s, t), Σ̂(s, t)). Based on the

EM updates for Reinforcement Learning as suggested in [12],

[15], we can derive the update rule

θ′ = θ +
Eτ

{

∑T

t=1
εtQ

π(st,at, t
}

Eτ

{

∑T

t=1
Qπ (st,at, t)

} .

In order to reduce the number of trials in this on-policy

scenario, we reuse the trials through importance sampling

[16], [11]. To avoid the fragility sometimes resulting from

importance sampling in reinforcement learning, samples with

very small importance weights are discarded.

IV. EVALUATION & APPLICATION

In this section, we demonstrate the effectiveness of the

augmented framework for perceptually coupled motor prim-

itives as presented in Section II and show that our concerted

approach of using imitation for initialization and reinforcement

learning for improvement works well in practice, particularly



with our novel PoWER algorithm from Section III. We show

that this method can be used in learning a complex, real-life

motor learning problem Ball-in-a-Cup in a physically realistic

simulation of an anthropomorphic robot arm. This problem is

a good benchmark for testing the motor learning performance

and we show that we can learn the problem roughly at the

efficiency of a young child. This algorithm successfully creates

a perceptual coupling even to perturbations that are very

challenging for a skilled adult player.

A. Robot Application: Ball-in-a-Cup

We have applied the presented algorithm in order to teach

a physically-realistic simulation of an anthropomorphic SAR-

COS robot arm how to perform the traditional American chil-

dren’s game Ball-in-a-Cup, also known as Balero, Bilboquet

or Kendama. The toy consists of a ball which is attached to a

wooden cup by a string. The initial position is the ball hanging

down vertically on the string and the player has to toss the

ball into the cup by jerking his arm [17], see Figure 3(top) for

an illustrative figure. The state of the system is described in

Cartesian coordinates of the cup (i.e., the operational space)

and the Cartesian coordinates of the ball. The actions are the

cup accelerations in Cartesian coordinates with each direction

represented by a motor primitive. An operational space control

law [18] is used in order to transform accelerations in the

operational space of the cup into joint-space torques. All motor

primitives are perturbed separately but employ the same joint

reward which is rt = exp(−α(xc − xb)
2 − α(yc − yb)

2)
the moment where the ball passes the rim of the cup with

a downward direction and rt = 0 all other times. The cup

position is denoted by [xc, yc, zc] ∈ R
3, the ball position

[xb, yb, zb] ∈ R
3 and a scaling parameter α = 10000. The

task is quite complex as the reward is not modified solely by

the movements of the cup but foremost by the movements of

the ball and the movements of the ball are very sensitive to

perturbations. A small perturbation of the initial condition or

the trajectory will drastically change the movement of the ball

and hence the outcome of the trial if we do not use any form

of perceptual coupling to the external variable “ball”.

Due to the complexity of the task, Ball-in-a-Cup is even

a hard motor task for children who only succeed at it by

observing another person playing or deducing from similar

previously learned tasks how to maneuver the ball above the

cup in such a way that it can be caught. Subsequently, a

lot of improvement by trial-and-error is required until the

desired solution can be achieved in practice. The child will

have an initial success as the initial conditions and executed

cup trajectory fit together by chance, afterwards the child still

has to practice a lot until it is able to get the ball in the

cup (almost) every time and so cancel various perturbations.

Learning the necessary perceptual coupling to get the ball in

the cup on a consistent basis is even a hard task for adults,

as our whole lab can testify. In contrast to a tennis swing,

where a human just needs to learn a goal function for the one

moment the racket hits the ball, in Ball-in-a-Cup we need a

complete dynamical system as cup and ball constantly interact.
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Figure 4. This figure shows the expected return for one specific perturbation
of the learned policy in the Ball-in-a-Cup scenario (averaged over 3 runs with
different random seeds and the standard deviation indicated by the error bars).
Convergence is not uniform as the algorithm is optimizing the returns for a
whole range of perturbations and not for this test case. Thus, the variance in
the return as the improved policy might get worse for the test case but improve
over all cases. Our algorithm rapidly improves, regularly beating a hand-tuned
solution after less than fifty trials and converging after approximately 600
trials. Note that this plot is a double logarithmic plot and, thus, single unit
changes are significant as they correspond to orders of magnitude.

Mimicking how children learn to play Ball-in-a-Cup, we first

initialize the motor primitives by imitation and, subsequently,

improve them by reinforcement learning in order to get an

initial success. Afterwards we also acquire the perceptual

coupling by reinforcement learning.

We recorded the motions of a human player using a

VICONTM motion-capture setup in order to obtain an ex-

ample for imitation as shown in Figure 3(c). The extracted

cup-trajectories were used to initialize the motor primitives

using locally-weighted regression for imitation learning. The

simulation of the Ball-in-a-Cup behavior was verified using the

tracked movements. We used one of the recorded trajectories

for which, when played back in simulation, the ball goes

in but does not pass the center of the opening of the cup

and thus does not optimize the reward. This movement is

then used for initializing the motor primitives and determining

their parametric structure where cross-validation indicates that

91 parameters per motor primitive are optimal from a bias-

variance point of view. The trajectories are optimized by

reinforcement learning using the PoWER algorithm on the

parameters w for non perturbed initial conditions. The robot

constantly succeeds at bringing the ball into the cup after

approximately 60-80 iterations given no noise and perfect

initial conditions.

One set of the found trajectories is then used to calculate

the baseline ȳ = (h−b) and ˙̄y= (ḣ− ḃ), where h and b are

the hand and ball trajectories. This set is also used to set the

standard cup trajectories.

Hand tuned coupling factors work quite well for small

perturbations of the initial conditions. In order to make them

more robust we use reinforcement learning using the same

joint reward as before. The initial conditions (positions and

velocities) of the ball are perturbed completely randomly (no

PEGASUS Trick) using Gaussian random values with vari-

ances set according to the desired stability region. The PoWER

algorithm converges after approximately 600-800 iterations.
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Figure 5. This figure compares cup and ball trajectories with and without
perceptual coupling. The trajectories and different initial conditions are clearly
distinguishable. The perceptual coupling cancels the swinging motion of the
string and ball “pendulum” out. The successful trial is marked either by
overlying (x and y) or parallel (z) trajectories of the ball and cup from 1.2
seconds on.

This is roughly comparable to the learning speed of a 10 year

old child (Figure 4). For the training we used concurrently

standard deviations of 0.01m for x and y and of 0.1 m/s for

ẋ and ẏ. The learned perceptual coupling gets the ball in the

cup for all tested cases where the hand-tuned coupling was

also successful. The learned coupling pushes the limits of the

canceled perturbations significantly further and still performs

consistently well for double the standard deviations seen in the

reinforcement learning process. Figure 5 shows an example of

how the visual coupling adapts the hand trajectories in order

to cancel perturbations and to get the ball in the cup.

V. CONCLUSION

Perceptual coupling for motor primitives is an important

topic as it results in more general and more reliable solutions

while it allows the application of the dynamic systems motor

primitive framework to many other motor control problems. As

manual tuning can only work in limited setups, an automatic

acquisition of this perceptual coupling is essential.

In this paper, we have contributed an augmented version of

the motor primitive framework originally suggested by [1], [2],

[4] such that it incorporates perceptual coupling while keeping

a distinctively similar structure to the original approach and,

thus, preserving most of the important properties. We present

a concerted learning approach which relies on an initializa-

tion by imitation learning and, subsequent, self-improvement

by reinforcement learning. We introduce a particularly well-

suited algorithm for this reinforcement learning problem called

PoWER. The resulting framework works well for learning

Ball-in-a-Cup on a simulated anthropomorphic SARCOS arm

in setups where the original motor primitive framework would

not suffice to fulfill the task.
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