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Abstract Traditional motor primitive approaches deal largely with open-loop poli-
cies which can only deal with small perturbations. In this paper, we present a new
type of motor primitive policies which serve as closed-loop policies together with
an appropriate learning algorithm. Our new motor primitives are an augmented ver-
sion version of the dynamical system-based motor primitives [6] that incorporates
perceptual coupling to external variables. We show that these motor primitives can
perform complex tasks such as Ball-in-a-Cup or Kendama task even with large
variances in the initial conditions where a skilled human player would be chal-
lenged. We initialize the open-loop policies by imitation learning and the perceptual
coupling with a handcrafted solution. We first improve the open-loop policies and
subsequently the perceptual coupling using a novel reinforcement learning method
which is particularly well-suited for dynamical system-based motor primitives.

1 Introduction

The recent introduction of motor primitives based on dynamical systems [6,7,21,22]
have allowed both imitation learning and Reinforcement Learning to acquire new
behaviors fast and reliably. Resulting successes have shown that it is possible to
rapidly learn motor primitives for complex behaviors such as tennis swings [6, 7],
T-ball batting [14], drumming [16], biped locomotion [13, 22] and even in tasks
with potential industrial application [26]. However, in their current form these mo-
tor primitives are generated in such a way that they are either only coupled to in-
ternal variables [6, 7] or only include manually tuned phase-locking, e.g., with an
external beat [16] or between the gait-generating primitive and the contact time of
the feet [13, 22]. Furthermore, they incorporate the possibility to update parameters
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of a movement in real-time thus enabling perceptual coupling. E.g., changing the
the goal of a movement can couple it to a target, i.e., an external variable. How-
ever, this perceptual coupling only is effective for the end of the movement and the
rest of the movement is not coupled to the external variable. In many human mo-
tor control tasks, more complex perceptual coupling is needed in order to perform
the task. Using handcrafted coupling based on human insight will in most cases no
longer suffice. If changes of the internal variables constantly influences the behavior
of the external variable more complex perceptual coupling is required as the cou-
pling needs to incorporate knowledge of the behavior of the external variable. In
this paper, it is our goal to augment the Ijspeert-Nakanishi-Schaal approach [6,7] of
using dynamical systems as motor primitives in such a way that it includes percep-
tual coupling with external variables. Similar to the biokinesiological literature on
motor learning (see e.g., [29]), we assume that there is an object of internal focus
described by a state x and one of external focus y. The coupling between both foci
usually depends on the phase of the movement and, sometimes, the coupling only
exists in short phases, e.g., in a catching movement, this could be at initiation of the
movement (which is largely predictive) and during the last moment when the object
is close to the hand (which is largely prospective or reactive and includes move-
ment correction). Often, it is also important that the internal focus is in a different
space than the external one. Fast movements, such as a Tennis-swing, always follow
a similar pattern in joint-space of the arm while the external focus is clearly on an
object in Cartesian space or fovea-space. As a result, we have augmented the mo-
tor primitive framework in such a way that the coupling to the external, perceptual
focus is phase-variant and both foci y and x can be in completely different spaces.

Integrating the perceptual coupling requires additional function approximation,
and, as a result, the number of parameters of the motor primitives grows signifi-
cantly. It becomes increasingly harder to manually tune these parameters to high
performance and a learning approach for perceptual coupling is needed. The need
for learning perceptual coupling in motor primitives has long been recognized in
the motor primitive community [21]. However, learning perceptual coupling to an
external variable is not as straightforward. It requires many trials in order to prop-
erly determine the connections from external to internal focus. It is straightforward
to grasp a general movement by imitation and a human can produce a Ball-in-a-
Cup movement or a Tennis-swing after a single or few observed trials of a teacher
but he will never have a robust coupling to the ball. Furthermore, small differences
between the kinematics of teacher and student amplify in the perceptual coupling.
This part is the reason why perceptually driven motor primitives can be initialized
by imitation learning but will usually require self-improvement by reinforcement
learning. This is analogous to the case of a human learning tennis: a teacher can
show a forehand but a lot of self-practice is needed for a proper tennis game.
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Fig. 1 Illustration of the be-
havior of the motor primitives
(i) and the augmented motor
primitives (ii).

2 Augmented Motor Primitives with Perceptual Coupling

There are several frameworks for motor primitives used in robotics (e.g., [9]). In
this section, we first introduce the general idea behind dynamic system motor prim-
itives as suggested in [6,7] and, subsequently, show how perceptual coupling can be
introduced. Subsequently, we show how the perceptual coupling can be realized by
augmenting the acceleration-based framework from [21].

2.1 Perceptual Coupling for Motor Primitives

The basic idea in the original work of Ijspeert, Nakanishi and Schaal [6,7] is that mo-
tor primitives can be parted into two components, i.e., a canonical system h which
drives transformed systems gk for every considered degree of freedom k. As a result,
we have a system of differential equations given by

ż = h(z), (1)
ẋ = g(x,z,w), (2)

which determines the variables of internal focus x (e.g., Cartesian or joint positions).
Here, z denotes the state of the canonical system, which is indicates the current
phase of the movement, and w the internal parameters for transforming the output
of the canonical system. The schematic in Figure 2 illustrates this traditional setup
in black. In Section 2.2, we will discuss good choices for these dynamical systems
as well as their coupling based on the most current formulation [21].

When taking an external variable y into account, there are three different ways
how this variable influences the motor primitive system which one can consider,
i.e., (i) it could only influence Eq.(1) which would be appropriate for synchroniza-
tion problems and phase-locking (similar as in [12,16]), (ii) only affect Eq.(2) which
allows the continuous modification of the current state of the system by another vari-
able and (iii) the combination of (i) and (ii). While (i) and (iii) are the right solution
if phase-locking or synchronization are needed, the coupling in the canonical sys-
tem will destroy many of the nice properties of the system and make it prohibitively
hard to learn in practice. Furthermore, as we focus on discrete movements in this



4 Jens Kober, Betty Mohler, Jan Peters

paper, we focus on the case (ii) which has not been used to date. In this case, we
have a modified dynamical system

ż = h(z), (3)
ẋ = ĝ(x,y, ȳ,z,v), (4)
˙̄y = g(ȳ,z,w), (5)

where y denotes the state of the external variable, ȳ the expected state of the exter-
nal variable and ˙̄y its derivative. This architecture inherits most positive properties
from the original work while allowing the incorporation of external feedback. We
will show that we can incorporate previous work with ease and that the resulting
framework resembles the one in [21] while allowing to couple the external variables
into the system.

2.2 Realization for Discrete Movements

Fig. 2 General schematic
illustrating both the original
motor primitive framework
by [7, 21] in black and the
augmentation for perceptual
coupling in red.

Canonical
System

Transformed
System 1

Transformed
System n

f1

f
n

Transformed
System 2

f2

External 

Variable

Velocity
Position

Acceleration

Velocity
Position

Acceleration

Velocity
Position

Acceleration

The original formulation in [6, 7] was a major breakthrough as the right choice
of the dynamical systems in Equations (1, 2) allows determining the stability of the
movement, choosing between a rhythmic and a discrete movement and is invari-
ant under rescaling in both time and movement amplitude. With the right choice of
function approximator (in our case locally-weighted regression), fast learning from
a teachers presentation is possible. In this section, we first discuss how the most cur-
rent formulation from the motor primitives as discussed in [21] is instantiated from
Section 2.1. Subsequently, we show how it can be augmented in order to incorporate
perceptual coupling.

While the original formulation in [6, 7] used a second-order canonical system, it
has since then been shown that a single first order system suffices [21], i.e., we have

ż = h(z) =−ταhz,
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which represents the phase of the trajectory. It has a time constant τ = 1
T (where T

is the movement duration) and a parameter αh which is chosen such that z ≈ 0 at
T thus ensuring that the influence of the transformation function (8) vanishes. We
can now choose our internal state such that position of degree of freedom k is given
by qk = x2k, i.e., the 2k-th component of x, the velocity by q̇k = τx2k+1 = ẋ2k and
the acceleration by q̈k = τ ẋ2k+1. Upon these assumptions, we can express the motor
primitives function g in the following form

ẋ2k+1 = ταg (βg (tk− x2k)− x2k+1)+ τ
((

tk− x0
2k
)
+ak

)
fk, (6)

ẋ2k = τx2k+1. (7)

This function has the same time constant τ as the canonical system, parameters αg,
βg set such that the system is critically damped, a goal parameter tk corresponding
to the final position of x2k, the initial position x0

2k, an amplitude modifier ak which
can be set arbitrarily, and a transformation function fk. This transformation function
transforms the output of the canonical system so that the transformed system can
represent complex nonlinear patterns and is given by

fk (z) =
N

∑
i=1

ψi(z)wiz, (8)

where w are adjustable parameters and uses normalized Gaussian kernels without
scaling such as

ψi =
exp
(
−hi (z− ci)

2
)

∑
N
j=1 exp

(
−h j (z− c j)

2
) (9)

for localizing the interaction in phase space where we have centers ci and width hi.
In order to learn a motor primitive with perceptual coupling, we need two com-

ponents. First, we need to learn the normal or average behavior ȳ of the variable of
external focus y (e.g., the relative positions of an object) which can be represented
by a single motor primitive ḡ, i.e., we can use the same type of function from Equa-
tions (2, 5) for ḡ which are learned based on the same z and given by Equations (6,
7). Additionally, we have the system ĝ for the variable of internal focus x which
determines our actual movements which incorporates the inputs of the normal be-
havior ȳ as well as the current state y of the external variable. We obtain the system
ĝ by inserting a modified coupling function f̂(z,y, ȳ) instead of the original f(z) in g.
Function f(z) is modified in order to include perceptual coupling to y and we obtain

f̂k (z,y, ȳ) =
N

∑
i=1

ψi(z)ŵiz+
M

∑
j=1

ψ̂ j(z)
(

κ
T
jk(y− ȳ)+δ

T
jk(ẏ− ˙̄y)

)
, (10)

where ψ̂ j(z) denote Gaussian kernels as in Equation (9) with centers ĉ j and width
ĥ j. Note, that it can be useful to set N > M for reducing the number of parameters.
All parameters are given by v = [ŵ,κ,δ ]. Here, ŵ are just the standard transfor-
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mation parameters while κ jk and δ jk are the local coupling factors which can be
interpreted as gains acting on the difference between the desired behavior of the ex-
ternal variable and its actual behavior. Note that for noise-free behavior and perfect
initial positions, such coupling would never play a role; thus, the approach would
simplify to the original approach. However, in the noisy, imperfect case, this per-
ceptual coupling can ensure success even in extreme cases.

Fig. 3 This figure shows schematic drawings of the Ball-in-a-Cup motion, the final learned robot
motion as well as a motion-captured human motion. The green arrows show the directions of the
momentary movements. The human cup motion was taught to the robot by imitation learning with
91 parameters for 1.5 seconds. Please also refer to the video on the first author’s website.

3 Learning for Perceptually Coupled Motor Primitives

While the transformation function fk(z) (8) can be learned from few or even just a
single trial, this simplicity no longer transfers to learning the new function f̂k(z,y, ȳ)
(10) as perceptual coupling requires that the coupling to an uncertain external vari-
able is learned. While imitation learning approaches are feasible, they require larger
numbers of presentations of a teacher with very similar kinematics for learning
the behavior sufficiently well. As an alternative, we could follow “Nature as our
teacher”, and create a concerted approach of imitation and self-improvement by
trial-and-error. For doing so, we first have a teacher who presents several trials and,
subsequently, we improve our behavior by reinforcement learning.
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3.1 Imitation Learning with Perceptual Coupling

Imitation learning is applied to a large number of problems in robotics (e.g.,
[4, 5, 17]). Here we can largely follow the original work in [6, 7, 21] and only need
minor modifications. We also make use of locally-weighted regression in order to
determine the optimal motor primitives, use the same weighting and compute the
targets based on the dynamical systems. However, unlike in [6, 7], we need a boot-
strapping step as we determine first the parameters for the system described by
Equation (5) and, subsequently, use the learned results in the learning of the system
in Equation (4). These steps can be performed efficiently in the context of dynam-
ical systems motor primitives as the transformation functions (8) of Equations (4)
and (5) are linear in parameters. As a result, we can choose the weighted squared
error

ε
2
m = ∑

n
i=1ψ

m
i

(
f ref
i − zT

i wm
)2

(11)

as cost function and minimize it for all parameter vectors wm with m∈ {1,2, . . . ,M}.
Here, the corresponding weighting function are denoted by ψm

i and the basis func-
tions by zT

i . The reference or target signal f ref
i is the desired transformation function

and i ∈ {1,2, . . . ,n} indicates the number of the sample. The error in Equation (11)
can be rewritten as

ε
2
m =

(
fref−Zwm

)T
Ψ

(
fref−Zwm

)
(12)

with fref giving the value of f ref
i for all samples i, Ψ = diag(ψm

i , . . . ,ψm
n ) and Zi =

zT
i . As a result, we have a standard locally-weighted linear regression problem that

can be solved straightforwardly and yields the unbiased estimator

wm =
(
ZT

ΨZ
)−1

ZT
Ψfref. (13)

This general approach has originally been suggested in [7]. Estimating the parame-
ters of the dynamical system is slightly more daunting, i.e., the movement duration
is extracted using motion detection (velocities are zero at the start and at the end)
and the time-constant is set accordingly.

This local regression yields good values for the parameters of fk(z). Subse-
quently, we can perform the exact same step for f̂k(z,y, ȳ) where only the number of
variables has increased but the resulting regression follows analogously. However,
note that while a single demonstration suffices for the parameter vector w and ŵ, the
parameters κ and δ cannot be learned by imitation as these require deviation from
the nominal behavior for the external variable.

However, as discussed before, pure imitation for perceptual coupling can be dif-
ficult for learning the coupling parameters as well as the best nominal behavior for
a robot with kinematics different from the human, many different initial conditions
and in the presence of significant noise. Thus, we suggest to improve the policy by
trial-and-error using reinforcement learning upon an initial imitation.
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3.2 Reinforcement Learning for Perceptually Coupled Motor
Primitives

Reinforcement learning [24] is widely used in robotics (e.g., [18]) but reinforce-
ment learning of discrete motor primitives is a very specific type of learning prob-
lem where it is hard to apply generic reinforcement learning algorithms [14, 15].
For this reason, the focus of this paper is largely on domain-appropriate reinforce-
ment learning algorithms which operate on parametrized policies for episodic con-
trol problems.

3.2.1 Reinforcement Learning Setup

When modeling our problem as a reinforcement learning problem, we always
have a state s = [z,y, ȳ,x] with high dimensions (as a result, standard RL meth-
ods which discretize the state-space can no longer be applied), and the action
a = [f(z)+ ε, f̂(z,y, ȳ)+ ε̂] is the output of our motor primitives. Here, the explo-
ration is denoted by ε and ε̂ , and we can give a stochastic policy a∼ π(s) as distri-
bution over the states with parameters θ = [w,v]∈Rn. After a next time-step δ t, the
actor transfers to a state st+1 and receives a reward rt . As we are interested in learn-
ing complex motor tasks consisting of a single stroke [21, 29], we focus on finite
horizons of length T with episodic restarts [24] and learn the optimal parametrized
policy for such problems. The general goal in reinforcement learning is to optimize
the expected return of the policy with parameters θ defined by

J(θ) =
∫

T
p(τ)R(τ)dτ, (14)

where τ = [s1:T+1,a1:T ] denotes a sequence of states s1:T+1 = [s1, s2, . . ., sT+1]
and actions a1:T = [a1, a2, . . ., aT ], the probability of an episode τ is denoted by
p(τ) and R(τ) refers to the return of an episode τ . Using Markov assumption, we
can write the path distribution as p(τ) = p(x1)∏

T+1
t=1 p(st+1|st ,at)π(at |st , t) where

p(s1) denotes the initial state distribution and p(st+1|st ,at) is the next state distribu-
tion conditioned on last state and action. Similarly, if we assume additive, accumu-
lated rewards, the return of a path is given by R(τ) = 1

T ∑
T
t=1 r(st ,at ,st+1, t), where

r(st ,at ,st+1, t) denotes the immediate reward.
While episodic Reinforcement Learning (RL) problems with finite horizons are

common in motor control, few methods exist in the RL literature (c.f., model-free
method such as Episodic REINFORCE [28] and the Episodic Natural Actor-Critic
eNAC [14] as well as model-based methods, e.g., using differential-dynamic pro-
gramming [2]). In order to avoid learning of complex models, we focus on model-
free methods and, to reduce the number of open parameters, we rather use a novel
Reinforcement Learning algorithm which is based on expectation-maximization.
Our new algorithm is called Policy learning by Weighting Exploration with the Re-
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turns (PoWER) and can be derived from the same higher principle as previous policy
gradient approaches, see [8] for details.

3.2.2 Policy learning by Weighting Exploration with the Returns (PoWER)

When learning motor primitives, we intend to learn a deterministic mean policy
ā = θ

T
µ(s) = f(z) which is linear in parameters θ and augmented by additive ex-

ploration ε(s, t) in order to make model-free reinforcement learning possible. As a
result, the explorative policy can be given in the form a = θ

T
µ(s, t) + ε(µ(s, t)).

Previous work in [14, 15], with the notable exception of [19], has focused on state-
independent, white Gaussian exploration, i.e., ε(µ(s, t)) ∼ N (0,Σ), and has re-
sulted into applications such as T-Ball batting [14] and constrained movement [3].
However, from our experience, such unstructured exploration at every step has sev-
eral disadvantages, i.e., (i) it causes a large variance in parameter updates which
grows with the number of time-steps, (ii) it perturbs actions too frequently, as the
system acts as a low pass filter the perturbations average out and thus, their effects
are ‘washed’ out and (iii) can damage the system executing the trajectory.

Alternatively, as introduced by [19], one could generate a form of structured,
state-dependent exploration ε(µ(s, t)) = εT

t µ(s, t) with [ε t ]i j ∼ N (0,σ2
i j), where

σ2
i j are meta-parameters of the exploration that can be optimized in a similar

manner. Each σ2
i j corresponds to one θi j. This argument results into the policy

a∼ π(at |st , t) = N (a|µ(s, t), Σ̂(s, t)). This form of policies improves upon the short-
comings of directly perturbed policies mentioned above. Based on the EM updates
for Reinforcement Learning as suggested in [8, 15], we can derive the update rule

θ
′ = θ +

Eτ

{
∑

T
t=1 ε tQπ(st ,at , t)

}
Eτ

{
∑

T
t=1 Qπ(st ,at , t)

} , (15)

where
Qπ (s,a, t) = E

{
∑

T
t̃=tr (st̃ ,at̃ ,st̃+1, t̃) |st = s,at = a

}
is the state-action value function. Note that this algorithm does not need the learning
rate as a meta-parameter.

In order to reduce the number of trials in this on-policy scenario, we reuse the
trials through importance sampling [1, 24]. To avoid the fragility sometimes result-
ing from importance sampling in reinforcement learning, samples with very small
importance weights are discarded.

The more shape parameters w are used the more details can be captured in a mo-
tor primitive and it can ease the imitation learning process. However, if the motor
primitives need to be refined by RL, each additional parameter slows down the learn-
ing process The parameters σ2

i j determine the exploration behavior where larger
values lead to greater changes in the mean policy and, thus, may lead to faster con-
vergence but can also drive the robot in unsafe regimes. The optimization of the
parameters decreases the exploration during convergence.
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Fig. 4 This figure shows the expected return for one specific perturbation of the learned policy
in the Ball-in-a-Cup scenario (averaged over 3 runs with different random seeds and the standard
deviation indicated by the error bars). Convergence is not uniform as the algorithm is optimizing
the returns for a whole range of perturbations and not for this test case. Thus, the variance in the
return as the improved policy might get worse for the test case but improve over all cases. Our
algorithm rapidly improves, regularly beating a hand-tuned solution after less than fifty trials and
converging after approximately 600 trials. Note that this plot is a double logarithmic plot and, thus,
single unit changes are significant as they correspond to orders of magnitude.

4 Evaluation & Application

In this section, we demonstrate the effectiveness of the augmented framework for
perceptually coupled motor primitives as presented in Section 2 and show that our
concerted approach of using imitation for initialization and reinforcement learning
for improvement works well in practice, particularly with our novel PoWER algo-
rithm from Section 3. We show that this method can be used in learning a complex,
real-life motor learning problem Ball-in-a-Cup in a physically realistic simulation
of an anthropomorphic robot arm. This problem is a good benchmark for testing the
motor learning performance and we show that we can learn the problem roughly
at the efficiency of a young child. This algorithm successfully creates a perceptual
coupling even to perturbations that are very challenging for a skilled adult player.
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4.1 Robot Application: Ball-in-a-Cup

We have applied the presented algorithm in order to teach a physically-realistic
simulation of an anthropomorphic SARCOS robot arm how to perform the tradi-
tional American children’s game Ball-in-a-Cup, also known as Balero, Bilboquet or
Kendama [27]. The toy has a small cup which is held in one hand (or, in our case, is
attached to the end-effector of the robot) and the cup has a small ball hanging down
on a string (the string has a length of 40cm for our toy). Initially, the ball is hanging
down vertically in a rest position. The player needs to move fast in order to induce a
motion in the ball through the string, toss it up and catch it with the cup, a possible
movement is illustrated in Figure 3 in the top row.

Note that learning Ball-in-a-Cup and Kendama have previously been studied in
robotics and we are going to contrast a few of the approaches here. While we learn
directly in the joint space of the robot, Takenaka et al. [25] recorded planar human
cup movements and determined the required joint movements for a planar, three
degree of freedom (DoF) robot so that it could follow the trajectories while visual
feedback was used for error compensation. Both Sato et al. [20] and Shone [23] used
motion planning approaches which relied on very accurate models of the ball while
employing only one DoF in [23] or two DoF in [20] so that the complete state-space
could be searched exhaustively. Interestingly, exploratory robot moves were used in
[20] to estimate the parameters of the employed model. The probably most advanced
preceding work on learning Kendama was done by Miyamoto [10] who used a seven
DoF anthropomorphic arm and recorded human motions to train a neural network to
reconstruct via-points. Employing full kinematic knowledge, the authors optimize a
desired trajectory. We previously learned a policy without perceptual coupling on a
real seven DoF anthropomorphic Barrett WAMTM [8] developing the method used
below to get the initial success.

Fig. 5 This figure illustrates
how the reward is calculated.
The plane represents the level
of the upper rim of the cup.
For a successful rollout the
ball has to be moved above
the cup first. The reward is
then calculated as the distance
of the center of the cup and
the center of the ball on the
plane at the moment the ball
is passing the plane in a
downward direction.

The state of the system is described in Cartesian coordinates of the cup (i.e.,
the operational space) and the Cartesian coordinates of the ball. The actions are
the cup accelerations in Cartesian coordinates with each direction represented by a
motor primitive. An operational space control law [11] is used in order to transform
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accelerations in the operational space of the cup into joint-space torques. All motor
primitives are perturbed separately but employ the same joint reward which is rt =
exp(−α(xc− xb)2−α(yc− yb)2) the moment where the ball passes the rim of the
cup with a downward direction and rt = 0 all other times (see Figure 5). The cup
position is denoted by [xc,yc,zc]∈R3, the ball position [xb,yb,zb]∈R3 and a scaling
parameter α = 10000. The task is quite complex as the reward is not modified solely
by the movements of the cup but foremost by the movements of the ball and the
movements of the ball are very sensitive to perturbations. A small perturbation of
the initial condition or the trajectory will drastically change the movement of the
ball and hence the outcome of the trial if we do not use any form of perceptual
coupling to the external variable “ball”.

Due to the complexity of the task, Ball-in-a-Cup is even a hard motor task for
children who only succeed at it by observing another person playing or deducing
from similar previously learned tasks how to maneuver the ball above the cup in
such a way that it can be caught. Subsequently, a lot of improvement by trial-and-
error is required until the desired solution can be achieved in practice. The child
will have an initial success as the initial conditions and executed cup trajectory fit
together by chance, afterwards the child still has to practice a lot until it is able
to get the ball in the cup (almost) every time and so cancel various perturbations.
Learning the necessary perceptual coupling to get the ball in the cup on a consistent
basis is even a hard task for adults, as our whole lab can testify. In contrast to a
tennis swing, where a human just needs to learn a goal function for the one moment
the racket hits the ball, in Ball-in-a-Cup we need a complete dynamical system as
cup and ball constantly interact. Mimicking how children learn to play Ball-in-a-
Cup, we first initialize the motor primitives by imitation and, subsequently, improve
them by reinforcement learning in order to get an initial success. Afterwards we also
acquire the perceptual coupling by reinforcement learning.

We recorded the motions of a human player using a VICONTM motion-capture
setup in order to obtain an example for imitation as shown in Figure 3(c). The ex-
tracted cup-trajectories were used to initialize the motor primitives using locally-
weighted regression for imitation learning. The simulation of the Ball-in-a-Cup be-
havior was verified using the tracked movements. We used one of the recorded tra-
jectories for which, when played back in simulation, the ball goes in but does not
pass the center of the opening of the cup and thus does not optimize the reward.
This movement is then used for initializing the motor primitives and determining
their parametric structure where cross-validation indicates that 91 parameters per
motor primitive are optimal from a bias-variance point of view. The trajectories are
optimized by reinforcement learning using the PoWER algorithm on the parameters
w for non perturbed initial conditions. The robot constantly succeeds at bringing
the ball into the cup after approximately 60-80 iterations given no noise and perfect
initial conditions.

One set of the found trajectories is then used to calculate the baseline ȳ = (h−b)
and ˙̄y = (ḣ− ḃ), where h and b are the hand and ball trajectories. This set is also
used to set the standard cup trajectories.
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Fig. 6 This figure compares
cup and ball trajectories with
and without perceptual cou-
pling. The trajectories and
different initial conditions are
clearly distinguishable. The
perceptual coupling cancels
the swinging motion of the
string and ball “pendulum”
out. The successful trial is
marked by black arrows at the
point where the ball enters the
cup.
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Without perceptual coupling the robot misses for even tiny perturbations of the
initial conditions. Hand tuned coupling factors work quite well for small perturba-
tions. In order to make them more robust we use reinforcement learning using the
same joint reward as before. The initial conditions (positions and velocities) of the
ball are perturbed completely randomly (no PEGASUS Trick) using Gaussian ran-
dom values with variances set according to the desired stability region. The PoWER
algorithm converges after approximately 600-800 iterations. This is roughly com-
parable to the learning speed of a 10 year old child (Figure 4). For the training we
used concurrently standard deviations of 0.01m for x and y and of 0.1 m/s for ẋ and
ẏ. The learned perceptual coupling gets the ball in the cup for all tested cases where



14 Jens Kober, Betty Mohler, Jan Peters

the hand-tuned coupling was also successful. The learned coupling pushes the lim-
its of the canceled perturbations significantly further and still performs consistently
well for double the standard deviations seen in the reinforcement learning process.
Figure 6 shows an example of how the visual coupling adapts the hand trajectories
in order to cancel perturbations and to get the ball in the cup.

The coupling factors represent the actions to be taken in order to get back to the
desired relative positions and velocities of the ball with respect to the hand. This
corresponds to an implicit model of how cup movements affect the ball movements.
The factors at the beginning of the motion are small as there is enough time to cor-
rect the errors later on. At the very end the hand is simply pulled directly under the
ball so it can fall into the cup. The perceptual coupling is robust to small changes
of the parameters of the toy (string length, ball weight). We also learned the cou-
pling directly in joint-space in order to show, that the augmented motor primitives
can handle perception and action in different spaces (perception in task space and
action in joint space, for our evaluation). For each of the seven degrees of freedom
a separate motor primitive is used, ȳ and ˙̄y remain the same as before. Here we
were not able to find good coupling factors by hand-tuning. Reinforcement learning
finds working parameters but they do not perform as well as the Cartesian version.
These effects can be explained by two factors: the learning task is harder as we
have a higher dimensionality. Furthermore, we are learning the inverse kinematics
of the robot implicitly. If the perturbations are large, the perceptual coupling has
to do large corrections. These large corrections tend to move the robot in regions
where the inverse kinematics differ from the ones for the mean motion and, thus,
the learned implicit inverse kinematics no longer perform well. This behavior leads
to even larger deviations and the effects accumulate.

5 Conclusion

Perceptual coupling for motor primitives is an important topic as it results in more
general and more reliable solutions while it allows the application of the dynami-
cal systems motor primitive framework to many other motor control problems. As
manual tuning can only work in limited setups, an automatic acquisition of this per-
ceptual coupling is essential.

In this paper, we have contributed an augmented version of the motor primitive
framework originally suggested by [6, 7, 21] such that it incorporates perceptual
coupling while keeping a distinctively similar structure to the original approach
and, thus, preserving most of the important properties. We present a concerted
learning approach which relies on an initialization by imitation learning and, sub-
sequent, self-improvement by reinforcement learning. We introduce a particularly
well-suited algorithm for this reinforcement learning problem called PoWER. The
resulting framework works well for learning Ball-in-a-Cup on a simulated anthro-
pomorphic SARCOS arm in setups where the original motor primitive framework
would not suffice to fulfill the task.
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