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Abstract—Hitting and batting tasks, such as tennis fore-
hands, ping-pong strokes, or baseball batting, depend on
predictions where the ball can be intercepted and how it
can properly be returned to the opponent. These predictions
get more accurate over time, hence the behaviors need to
be continuously modified. As a result, movement templates
with a learned global shape need to be adapted during the
execution so that the racket reaches a target position and
velocity that will return the ball over to the other side of the
net or court. It requires altering learned movements to hit a
varying target with the necessary velocity at a specific instant
in time. Such a task cannot be incorporated straightforwardly
in most movement representations suitable for learning. For
example, the standard formulation of the dynamical system
based motor primitives (introduced by Ijspeert et al. [1]) does
not satisfy this property despite their flexibility which has
allowed learning tasks ranging from locomotion to kendama.
In order to fulfill this requirement, we reformulate the Ijspeert
framework to incorporate the possibility of specifying a desired
hitting point and a desired hitting velocity while maintaining
all advantages of the original formulation. We show that the
proposed movement template formulation works well in two
scenarios, i.e., for hitting a ball on a string with a table tennis
racket at a specified velocity and for returning balls launched by
a ball gun successfully over the net using forehand movements.
All experiments were carried out on a Barrett WAM using a
four camera vision system.

I. INTRODUCTION

Learning new skills can frequently be helped significantly

by choosing a movement template representation that fa-

cilitates the process of acquiring and refining the desired

behavior. For example, the work on dynamical systems-

based motor primitives [1]–[3] has allowed speeding up

both imitation and reinforcement learning while, at the same

time, making them more reliable. Resulting successes have

shown that it is possible to rapidly learn motor primitives

for complex behaviors such as tennis swings [1] with only

a final target, constrained reaching [4], drumming [5], biped

locomotion [2], [6] and even in tasks with potential industrial

application [7]. Although some of the presented examples,

e.g., the tennis swing [1] or the T-ball batting [8], are striking

movements, these standard motor primitives cannot properly

encode a hitting movement. Previous work needed to make

simplistic assumptions such as having a static goal [8], a

learned complex goal function [9] or a stationary goal that

could only be lightly touched at the movement’s end [1].

Most racket sports require that we hit a non-stationary

target at various positions and with various velocities during

the execution of a complete striking movement. For example,
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in table tennis, a typical movement consists of swinging back

from a rest postures, hitting the ball at a desired position

with a desired orientation and velocity, continuing the swing

a bit further and finally returning to the rest posture. See

Figure 1 for an illustration. Sports sciences literature [10],

[11] indicates that most striking movements are composed of

similar phases that only appear to be modified by location

and velocity at the interception point for the ball [12]–[15].

These findings indicate that similar motor primitives are

being used that are invariant under these external influences

similar to the Ijspeert motor primitives [1]–[3] being invari-

ant under the modification of the final position, movement

amplitude and duration. However, the standard formulation

by Ijspeert et al. cannot be used properly in this context as

there is no possibility to directly incorporate either a via-

point or a target velocity (if the duration cannot be adapted

as, e.g., for an approaching ball). Hence, a reformulation is

needed that can deal with these requirements.

In this paper, we augment the Ijspeert approach [1]–[3]

of using dynamical systems as motor primitives in such a

way that it includes the possibility to set arbitrary velocities

at the hitting point without changing the overall shape of

the motion or introducing delays that will prevent a proper

strike. This modification allows the generalization of learned

striking movements, such as hitting and batting, from demon-

strated examples. In Section II, we present the reformulation

of the motor primitives as well as the intuition behind the

adapted approach. We apply the presented method in Sec-

tion III where we show two successful examples. First, we

test the striking movements primitive in a static scenario of

hitting a hanging ball with a table tennis racket and show that

Fig. 1. This figure illustrates the different phases of a table tennis stroke.
The blue box on the left represents a ping-pong ball launcher, the table
is shown in green and the different states of the robot are superposed. A
typical racket trajectory is indicated by the dark gray solid line while the
orange dashed line represents the ball’s trajectory. The robot goes through
four stages: it swings back ( 1© → 2©), it strikes the ball at a virtual hitting
point with a goal-oriented velocity at posture 3©, it follows the strike through
( 3© → 4©) and finally returns to the rest posture 1©. While the complete
arm movement can be modeled with the Ijspeert approach, the reformulation
in this paper is required to be able to properly strike the ball.

2010 IEEE International Conference on Robotics and Automation (ICRA)



(a) Ijspeert Motor Primitive

(b) Hitting Motor Primitive

Fig. 2. In this figure, we convey the intuition of the presented reactive
templates for learning striking movements. The Ijspeert formulation can be
seen as a nonlinear spring damper system that pulls a degree of freedom to
a stationary goal while exhibiting a learned movement shape. The presented
approach allows hitting a target with a specified velocity without replanning
if the target is adapted and, in contrast to the Ijspeert formulation, can be
seen as a degree of freedom pulled towards a moving goal.

the movement generalizes well to new ball locations. After

this proof of concept, we take the same movement template

representation in order to learn an adaptable forehand for

table tennis. The later is tested in the setup indicated by

Figure 1 where we use a seven degrees of freedom Barrett

WAM in order to return balls launched by a ball cannon.

II. MOVEMENT TEMPLATES FOR LEARNING TO STRIKE

Ijspeert et al. [1] suggested to use a dynamical system

approach in order to represent both discrete point-to-point

movements as well as rhythmic motion with motor primi-

tives. This framework allows the representation of arbitrarily

shaped movements through the primitive’s policy parameters,

and these parameters can be estimated straightforwardly

by locally weighted regression. In the discrete case, these

primitives can be modified through their hyperparameters

in order to adapt to the final goal position, the movement

amplitude or the duration of the movement. The resulting

movement can start from arbitrary positions and velocities

and go to arbitrary final positions while maintaining the

overall shape of the trajectory. In Section II-A, we review

the most current version of this approach based on [2], [3].

However, as outlined in Section I, this formulation of the

motor primitives cannot be used straightforwardly in racket

sports as incorporating a desired virtual hitting point [10],

[11] (consisting of a desired target position and velocity)

cannot be achieved straightforwardly. For example, in table

tennis, fast forehand movements need to hit a ball at a

pre-specified speed, hitting time and a continuously adapted

location. In the original Ijspeert formulation, the goal needs

to be determined at the start of the movement and at

approximately zero velocity as in the experiments in [1]; a

via-point target can only be hit properly by modifying either

the policy parameters [8] or, indirectly, by modifying the

goal parameters [9]. Hence, such changes of the target can

only be achieved by drastically changing the shape of the

trajectory and duration.

As an alternative, we propose a modified version of

Ijspeert’s original framework that overcomes this limitation

and is particularly well-suited for striking movements. This

modification allows setting both a hitting point and a striking

velocity while maintaining the desired duration and the

learned shape of the movement. Online adaptation of these

hyperparameters is possible and, hence, it is well-suited for

learning racket sports such as table tennis. The basic intuition

behind the modified version is similar to the one of Ijspeert’s

primitives, i.e., both assume that the controlled degree of

freedom is connected to a specific spring damper system;

however, the approach presented here allows overcoming

previous limitations by assuming a connected moving tar-

get, see Figure 2. The resulting approach is explained in

Section II-B.

A further drawback of the Ijspeert motor primitives [1]–

[3] is that, when generalizing to new targets, they tend to

produce large accelerations early in the movement. Such an

acceleration peak may not be well-suited for fast movements

and can lead to execution problems due to physical limita-

tions; Figure 4 illustrates this drawback. In Section II-C, we

propose a modification that alleviates this shortcoming.

A. Discrete Movement Primitives

While the original formulation in [1], [2] for discrete

dynamical systems motor primitives used a second-order

system to represent the phase z of the movement, this

formulation has proven to be unnecessarily complicated in

practice. Since then, it has been simplified and in [3] it was

shown that a single first order system suffices

ż = −ταzz. (1)

This canonical system has the time constant τ = 1/T where

T is the duration of the motor primitive, a parameter αz

which is chosen such that z ≈ 0 at T to ensure that the

influence of the transformation function, shown in Eq. (3),

vanishes. Subsequently, the internal state x of a second

system is chosen such that positions q of all degrees of

freedom are given by q = x1, the velocities q̇ by q̇ =
τx2 = ẋ1 and the accelerations q̈ by q̈ = τ ẋ2. Under

these assumptions, the learned dynamics of Ijspeert motor

primitives can be expressed in the following form

ẋ2 = ταx (βx (t − x1) − x2) + τAf (z) , (2)

ẋ1 = τx2.

This set of differential equations has the same time con-

stant τ as the canonical system, parameters αx, βx set

such that the system is critically damped, a goal parameter

t, a transformation function f and an amplitude matrix

A = diag(a1, a2, . . . , an), with the amplitude modifier a =
[a1, a2, . . . , an]. In [3], they use a = t − x0

1
with the initial

position x0

1
, which ensures linear scaling. Other choices are

possibly better suited for specific tasks, see e.g., [16]. The

transformation function f (z) alters the output of the first

system, in Eq. (1), so that the second system, in Eq. (2), can

represent complex nonlinear patterns and it is given by

f (z) =
∑N

i=1
ψi (z)wiz. (3)

Here wi contains the i
th adjustable parameter of all degrees

of freedom, N is the number of parameters per degree of



0 0.5 1 1.5

6

4

2

0

2

4

6

-

-

-

0 0.5 1 1.5
40

20

0

20

40

-

-

0 0.5 1 1.5

600

400

200

0

200

400

-

-

-

Fig. 3. Target velocity adaptation is essential for striking movements.
This figure illustrates how different versions of the dynamical system based
motor primitives are affected by a change of the target velocity. Here, an
artificial training example (i.e., q = 2t2 + cos(4tπ) − 1) is generated.
After learning, all motor primitive formulations manage to reproduce the
movements accurately from the training example for the same target velocity
and cannot be distinguished. When the target velocity is tripled, this picture
changes drastically. For Ijspeert’s original model the amplitude modifier a

had to be increased to yield the desired velocity. The increased amplitude
of the trajectory is clearly visible for the positions and even more drastic
for the velocities and accelerations. The reformulations presented in this
paper, stay closer to the movement shape and amplitude. Particularly the
velocities and accelerations exhibit that the new approach allows much better
generalizing of the learned behavior. This figure furthermore demonstrates
how a large initial step in acceleration appears for Ijspeert’s original model
(and the reformulation for hitting) even if a transformation function is used
to partially suppress it for the training example.

freedom, and ψi(z) are the corresponding weighting func-

tions [3]. Normalized Gaussian kernels are used as weighting

functions given by

ψi(z) =
exp

(

−hi (z − ci)
2

)

∑N

j=1
exp

(

−hj (z − cj)
2

) . (4)

These weighting functions localize the interaction in phase

space using the centers ci and widths hi. Note that the de-

grees of freedom (DoF) are usually all modeled independent

in the second system in Eq. (2). All DoFs are synchronous

as the dynamical systems for all DoFs start at the same time,

have the same duration, and the shape of the movement

is generated using the transformation f (z) in Eq. (3) that

is learned as a function of the shared canonical system in

Eq. (1).

As suggested in [1], [2] locally-weighted linear regression

can be used for imitation learning. The duration of discrete

movements is extracted using motion detection and the time-

constants are set accordingly. Additional feedback terms can

be added as shown in [3], [16], [17].

B. Adapting the Motor Primitives for Striking Movements

The regular formulation [1]–[3] which was reviewed in

Section II-A, allows to change the initial position x0

1
and

target position t (which corresponds to the position at the

end of the movement at time T ) of the motor primitive while

maintaining the overall shape of the movement determined

by the parameters wi. For disturbed initial conditions, the

attractor dynamics that pull the motor primitive to the trained

behavior and it is guaranteed to finally reach to the target

position t, see [1]. However, the formulation above only

considers the case of a final goal with a favored velocity

of ẋ1(T ) = 0 at the target t and final time T . However,
using the transformation function f (z) in Eq. (3), it can be

forced to arbitrary final velocities by changing the shape

parameters of the movement. As the last basis function in

the transformation function f (z) decays almost to zero at

time T the active parameters, the last parameter wN needs

to be over-proportionally large. If the motor primitive is

trained with ẋ1(T ) = 0 it simply rests at x1 = t if it

runs for longer than T . However, large wN often cause

overshooting in x1 and the trajectory is subsequently pulled

back to the final position t only using the linear attractor

dynamics in Eq. (2) which may not be suitable for a given

task. The target velocity ẋ1(T ) can only be changed either

by scaling the duration of the movement T or with the

amplitude modifier a; however a mapping of t and ẋ1(T ) to
a has to be established first. The main downsides of these

approaches, respectively, are that either the total duration is

changed (which makes the interception of a table tennis ball

hard) or that a modifies the whole motion including shape

and amplitude (which causes undesired movements and often

requires overly strenuous movements in table tennis). These

effects are illustrated in Figure 3. Note, if the target is

constantly adapted as in table tennis (where the ball trajectory

is not certain until the ball has bounced on the table the

last time), these effects will produce significantly stronger

undesired effects and, possibly, unstable behavior.

As an alternative for striking movements, we propose a

modification of the dynamical system based motor primitives

that allows us to directly specify the desired ẋ1(T ) while

maintaining the duration of the movement and having the

possibility to change the amplitude of the motion indepen-

dently. For doing so, we introduce a moving target and

include the desired final velocity in Eq. (2). We use a linearly

moving target but other choices may be better suited for

different tasks. This reformulation results in the following

equations for the learned dynamics

ẋ2 = ταg

(

βg (tm − x1) +

(

ṫ − ẋ1

)

τ

)

+ τAf , (5)

ẋ1 = τx2,

tm = t0

m − ṫ
ln (z)

ταh

, (6)

where ṫ is the desired final velocity, tm is the moving target

and the initial position of the moving target t0

m = t − τ ṫ
ensures that tm (T ) = t. The term − ln (z) / (ταh) is

proportional to the time if the canonical system in Eq. (1)

runs unaltered; however, adaptation of z allows the straight-

forward adaptation of the hitting time. If ṫ = 0, this

formulation is exactly the same as the original formulation.

The imitation learning approach mentioned in Section II-A

can be adapted straightforwardly to this formulation. Figure 3

illustrates how the different approaches behave when forced

to achieve a specified desired final velocity.

C. Safer Dynamics for Generalization

Generalizing fast movements such as a forehand in table

tennis can become highly dangerous if the primitive requires

exceedingly high accelerations or has large jumps in the

acceleration (e.g., the fastest table tennis moves that we
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Fig. 4. An important aspect of the Ijspeert framework is that such
primitives are guaranteed to be stable and, hence, safe for learning. A
problem of the regular formulation highly unevenly distributed acceleration
with a jump at the beginning of the movement of its unaltered dynamics.
These high accelerations affect the movement when the behavior is either
generalized to new goals or when during trial-and-error learning where
the initial parameters are small. Some of these problem have previously
been noted by Park [16], and are particularly bad in the context of fast
striking movements. Here, we compare the different formulations with
respect to their acceleration in the unaltered dynamics case (i.e., w = 0).
For a better comparison, we set the target velocity to zero (ṫ = 0). The
Ijspeert formulation clearly shows the problem with the large acceleration,
as does the reformulation for hitting (with a hitting speed of ṫ = 0
both are identical). While the Park modification starts without the jump
in acceleration, it requires almost as high accelerations shortly afterwards.
The acceleration-safe reformulation for hitting also starts out without a step
in acceleration and does not require huge accelerations.

have executed on our WAM had a peak velocity of 7m/s
and 10g maximum acceleration). Hence, the initial jump

in acceleration often observed during the execution of the

Ijspeert primitives may lead to desired accelerations that

a physical robot cannot properly execute, and may even

cause damage to the robot system. In the following, we

will discuss several sources of these acceleration jumps and

how to overcome them. If the dynamics are not altered

by the transformation function, i.e., w = 0, the highest

acceleration during the original Ijspeert motor primitive

occurs at the very first time-step and then decays rapidly.

If the motor primitives are properly initialized by imitation

learning, the transformation function will cancel this initial

acceleration, and, thus, this usually does not pose a problem

in the absence of generalization. However, when changing

the amplitude a of the motion (e.g., in order to achieve

a specific target velocity) the transformation function will

over- or undercompensate for this initial acceleration jump.

The adaptation proposed in Section II-B does not require a

change in amplitude, but suffers from a related shortcoming,

i.e., changing the target velocity also changes the initial

position of the target, thus results in a similar jump in

acceleration that needs to be compensated. Using the motor

primitives with an initial velocity that differs from the one

used during imitation learning has the same effect. Figures 3

and 4 illustrate these initial steps in acceleration for various

motor primitive formulations. As an alternative, we propose

to gradually activate the attractor dynamics of the motor

primitive (e.g., by reweighting them using the output of the

canonical system). When combined, these two adaptations

result in

ẋ2 =(1−z)ταg

(

βg(tm − x1)+

(

ṫ − ẋ1

)

τ

)

+ τAf . (7)

Surprisingly, after this modification the unaltered dynamics

(i.e., where w = 0 and, hence, τAf (z) = 0) result in trajec-

tories that roughly resemble a minimum jerk movements and,

hence, look very similar to human movements. Exactly as for

the Ijspeert formulation, we can arbitrarily shape the behavior

by learning the weights of the transformation function. Note

that [16] also introduced a similar modification canceling the

initial acceleration caused by the offset between initial and

target position; however, their approach cannot deal with a

deviating initial velocity.

The proposed acceleration jump compensation also yields

smoother movements during the adaptation of the hitting

point as well as smoother transitions if motor primitives are

sequenced. The later becomes particularly important when

the preceding motor primitive has a significantly different

velocity than during training (by imitation learning) or if

it is terminated early due to external events. All presented

modifications are compatible with the imitation learning

approach discussed in Section II-A and the adaptation is

straightforward. Figures 3 and 4 show how the presented

modifications overcome the problems with the initial jumps

in acceleration.

III. ROBOT EVALUATION

In this section, we evaluate the presented reactive tem-

plates for representing, learning and executing forehands

in the setting of table tennis. For doing so, we evaluate

our representation for striking movements first on hitting a

hanging ball in Section III-A and, subsequently, in the task

of returning a ball served by a ball launcher presented in

Section III-B.

When hitting a ping-pong ball that is hanging from the

ceiling, the task consists of hitting the ball with an ap-

propriate desired Cartesian velocity and orientation of the

paddle. Hitting a ping-pong ball shot by a ball launcher

requires predicting the ball’s future positions and velocities

in order to choose an interception point. The latter is only

sufficiently accurate after the ball has hit the table for the last

time. This short reaction time underlines that the movement

templates can be adapted during the trajectory under strict

time limitations when there is no recovery from a bad

generalization, long replanning or inaccurate movements.
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Fig. 5. This figure demonstrates the generalization of an imitated behavior
to a different target that is 15cm away from the original target. Note that this
trajectory is for a static target, hence the slow motion. The depicted degree
of freedom (DoF) is shoulder adduction-abduction (i.e., the second DoF).
The solid gray bars indicate the time before and after the main movement,
the gray dashed lines indicate the phase borders also depicted in Figure 1
and the target is hit at the second border.
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(a) Demonstration by a Human Instructor

131 2 4

(b) Example: Reproduction for Hitting a Stationary Ball

11 2 43

(c) Application: Returning Balls launched by a Ball Gun

Fig. 6. This figure presents a hitting sequence from the demonstration, a generalization on the robot with a ball attached by a string as well as a
generalization hitting a ball shot by a ping-pong ball launcher. The demonstration and the flying ball generalization are captured by a 25Hz video camera,
the generalization with the attached ball is captured with 200Hz through our vision system. From left to right the stills represent: rest posture, swing-back
posture, hitting point, swing-through and rest posture. The postures ( 1©− 4©) are the same as in Figure 2.

A. Generalizing Forehands on Static Targets

As a first experiment, we evaluated how well this new

formulation of hitting primitives generalizes forehand move-

ments learned from imitation as shown in Figure 6 (a).

First, we collected arm, racket and ball trajectories for

imitation learning using the 7 DoF Barrett WAM robot as an

haptic input device for kinesthetic teach-in where all inertial

forces and gravity were compensated. In the second step, we

employ this data to automatically extract the duration of the

striking movement, the duration of the individual phases as

well as the Cartesian target velocity and orientation of the

racket when hitting the ball. We employ a model (as shown

in Section II) that has phases for swinging back, hitting and

going to a rest posture. Both the phase for swing-back and

return-to-home phases will go into intermediary still phases

while the hitting phase goes through a target point with a

pre-specified target velocity. All phases can only be safely

executed due to the “safer dynamics” which we introduced

in Section II-C.

In this experiment, the ball is a stationary target and

detected by a stereo camera setup. Subsequently, the super-

visory level proposed in [11] determines the hitting point

and the striking velocity in configuration space. The motor

primitives are adjusted accordingly and executed on the robot

in joint-space using an inverse dynamics control law. The

robot successfully hits the ball at different positions within

a diameter of approximately 1.2m if kinematically feasible.

The adaptation for striking movements achieves the desired

velocities and the safer dynamics allow generalization to a

much larger area while successfully removing the possibly

large accelerations at the transitions between motor primi-

tives. See Figure 5 for a comparison of the training example

and the generalized motion for one degree of freedom and

Figure 6 (b) for a few frames from a hit of a static ball.

Please see the video accompanying this submission.

B. Playing against a Ball Launcher

This evaluation adds an additional layer of complexity as

the hitting point and the hitting time has to be estimated

from the trajectory of the ball and continuously adapted

as the hitting point cannot be reliably determined until the

ball has bounced off the table for the last time. In this

setting, the ball is tracked by two overlapping high speed

stereo vision setups with 200Hz cameras. In order to obtain

better estimates of the current position and to calculate the

velocities, the raw 3D positions are filtered by a specialized

Kalman filter [18] that takes contacts of the ball with the

table and the racket into account [11]. When used as a

Kalman predictor, we can again determine the target point

for the primitive with a pre-specified target velocity with

the method described in [11]. The results obtained for the

still ball generalize well from the static ball to the one

launched by a ball launcher at 3m/s which are returned

at speeds up to 8m/s. A sequence of frames from the

attached video is shown in Figure 6. The plane of possible

virtual hitting points again has a diameter of roughly 1m as



Fig. 7. Generalization to various targets (five different forehands at posture 3©) are shown approximately when hitting the ball.

shown in Figure 7. The modified motor primitives generated

movements with the desired hitting position and velocity.

The robot hit the ball in the air in approx. 95% of the

trials. However, due to a simplistic ball model and execution

inaccuracies the ball was often not properly returned on the

table. Please see the videos accompanying this submission

http://www.robot-learning.de/Research/HittingMPs .

Note that our results differ significantly from previous

approaches as we use a framework that allows us to learn

striking movements from human demonstrations unlike pre-

vious work in batting [19] and table tennis [20]. Unlike

baseball which only requires four degrees of freedom (as,

e.g., in Senoo et al. [19] who used a 4 DoF WAM arm in

a manually coded high speed setting), and previous work in

table tennis (which had only low-inertia, was overpowered

and had mostly prismatic joints [20]–[22]), we use a full

seven degrees of freedom revolutionary joint robot and, thus,

have to deal with larger inertia as the wrist adds roughly

2.5kg weight at the elbow. Hence, it was essential to train

trajectories by imitation learning that distribute the torques

well over the redundant joints as the human teacher was

suffering from the same constraints.

IV. CONCLUSION

In this paper, we rethink previous work on dynamic

systems motor primitive [1]–[3] in order to obtain move-

ment templates that can be used reactively in batting and

hitting sports. This reformulation allows to change the target

velocity of the movement while maintaining the overall

duration and shape. Furthermore, we present a modification

that overcomes the problem of an initial acceleration step

which is particularly important for safe generalization of

learned movements. Our adaptations retain the advantages

of the original formulation and perform well in practice.

We evaluate this novel motor primitive formulation first in

hitting a stationary table tennis ball and, subsequently, in

returning ball served by a ping pong ball launcher. In both

cases, the novel motor primitives manage to generalize well

while maintaining the features of the demonstration. This

new formulation of the motor primitives can hopefully be

used together with goal learning [9] in a mixture of motor

primitives [9] in order to create a complete framework for

learning tasks like table tennis autonomously.
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