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Abstract— Many motor skills consist of many lower level

elementary movements that need to be sequenced in order

to achieve a task. In order to learn such a task, both the

primitive movements as well as the higher-level strategy need

to be acquired at the same time. In contrast, most learning

approaches focus either on learning to combine a fixed set

of options or to learn just single options. In this paper, we

discuss a new approach that allows improving the performance

of lower level actions while pursuing a higher level task. The

presented approach is applicable to learning a wider range

motor skills, but in this paper, we employ it for learning games

where the player wants to improve his performance at the

individual actions of the game while still performing well at the

strategy level game. We propose to learn the lower level actions

using Cost-regularized Kernel Regression and the higher level

actions using a form of Policy Iteration. The two approaches

are coupled by their transition probabilities. We evaluate the

approach on a side-stall-style throwing game both in simulation

and with a real BioRob.

I. INTRODUCTION

In many motor skill tasks, the agents attempt to improve
their motor skills at the same time as performing the task.
In these settings it is important to balance learning of the
individual actions by practicing them while at the same time,
focusing on the overall performance in order to achieve
the complete skill. Prominent examples are leisure time
activities such as sports or motor skill games. For example,
when playing darts with friends, you will neither always
attempt the lowest risk action, nor always try to practice
one particular throw, which will be valuable when mastered.
Instead, you are likely to try plays with a reasonable level
of risk and rely on safe throws in critical situations. This
exploration is tightly woven into higher order dart games.

Optimal strategies often greatly differ according to the
skill level of the player. For example, in the dart game the
optimal target for obtaining the maximum number of points
with a single throw differs greatly depending on the accuracy
of the player [1]. For a professional player the best option is
to try to hit the triple 20. For a beginner, who exhibits a high
variation in throws, this target poses a high risk as the low
scoring fields 1 and 5 are right next to it. For a beginner the
best option is to aim at the left side of the 25 (“bull”) ring
which has the neighbors “double bull”, 14, 11, and 8. This
type of game can be modeled by a Markov decision process
(MDP) and solved using traditional reinforcement learning
methods [2].

In this paper, we address the problems the player faces
when learning during a game. In particular, the player has to
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decide for each throw if he wants to try to improve his level
of performance for the chosen action by exploration or go for
a more certain reward exploiting his abilities acquired so far.
As the skill level of the player constantly improves also the
higher level strategy needs to be constantly adapted. This
type of learning is a special form of hierarchical learning,
where improving the individual throws corresponds to a
lower level of learning, and the game strategy to a higher
level. In the notions common in reinforcement learning, one
could consider the lower level behaviors a type of option of
the strategy level.

Hierarchical learning for robotics has been investigated in
the supervised setting [3]–[9] as well as in the reinforcement
learning setting [10]–[14]. Our approach uses a two-level
hierarchy and we introduce novel concepts for the lower level
learning and the interaction between the levels. We propose
to learn the lower level behaviors using Cost-regularized
Kernel Regression [15]. This paper demonstrates how the two
levels are coupled by the transition probabilities of the higher
level, which can be estimated from the learned parameters
of the lower level. Our approach cannot discover options and
assumes that these are non-interruptible.

In Section II, we will discuss the components of the
framework. In Section III, we will evaluate the resulting
framework with a side-stall-like throwing game in simulation
and on a real BioRob.

II. TWO-LEVEL LEARNING APPROACH

Fig. 1. This figure illustrates the
setup of the robot evaluation.

Our framework consid-
ers a hierarchy of two lev-
els: a strategy level and a
behavior level. The strat-
egy level determines the
strategy for the high-level
moves, here termed “be-
haviors”, of the game. The
behavior level deals with
executing these behaviors
in an optimal fashion. The
strategy level chooses the
next behavior, which is
then executed by the be-
havior level. Upon com-
pletion of the behavior, the
strategy level chooses the
next behavior.

We assume that the game has discrete states s ∈ S and
discrete behaviors b ∈ B. In the dart setting a behavior
could be attempting to hit a specific field and the state could
correspond to the current score. Given the current state, each
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behavior has an associated expected outcome o ∈ O. The role
of the behavior level is to determine the parameters required
to achieve this outcome. For example, the behavior “throw
at field X” has the outcome “change score by X” as a result
of hitting field X. The transition probabilities of the strategy
level would express how likely it is to hit a different field.
We assume to have an episodic game with a finite horizon.

In the behavior level we augment the state space with
continuous states that describe the robot and the environment
to form the combined state space s. This state space could,
for example, include the position and velocity of the arm,
the position of the dart board as well as the current score.
The actions are considered to be continuous and could, for
example, be the accelerations of the arm. As the strategy level
has to wait until the behavior is completed the behaviors need
to be of episodic nature as well.

The objective of the strategy level is to maximize the
expected return

J(π) = E
��T

t=1R
π
t

�
,

of policy π, where E[·] denotes the expectation, T is the
length of the episode, and Rπ

t is the immediate reward at
time-step t. In the strategy level each time-step t corresponds
to executing one behavior b. Alternatively the problem can be
formulated as an infinite horizon problem where we define
an absorbing terminal state in which all actions receive an
immediate reward of 0. Using this formulation the expected
return is J(π) = V (s0), with the value function V (s) =�

s� Pπ(s)
ss� [Rπ(s)

ss� + V (s�)], where s is the current state, s�

the next state, Pπ(s)
ss� the transition probability given the

current policy π, and Rπ(s)
ss� the immediate reward. Depend-

ing on the specific setting many algorithms can be applied,
including dynamic programming, Q-learning, SARSA [2], or
REPS [16].

As we will discuss in Section II-B we can estimate the
transition probabilities for the behaviors parameters learned
in the behavior level. The rewards associated to state transi-
tions are known from the rules of the game. Thus, we have a
complete model of the strategy level and can employ model-

Algorithm 1: Policy Iteration [2]
Initialization:

V (s) ∈ R and π(s) ∈ B(s) arbitrarily for all s ∈ S

Policy Evaluation:

Repeat
∆ ← 0
For each s ∈ S:

v ← V (s)

V (s) ←
P

s� Pπ(s)
ss�

h
Rπ(s)

ss� + V (s�)
i

∆ ← max (∆, �v − V (s)�)
Until ∆ < � (a small positive number)

Policy Improvement:

policy-stable←true
For each s ∈ S:

bold ← π(s)
π(s) ← arg maxb

P
s� Pb

ss�
ˆ
Rb

ss� + V (s�)
˜

If bold �= π(s) then policy-stable←false
If policy-stable, then stop; else go to Policy Evaluation.

based reinforcement learning to solve the task. In this paper,
we employ Policy Iteration [2], as illustrated in Algorithm 1.

Fig. 2. This figure illustrates the
setup of the roles of the different
levels.

The objective of the be-
havior level is to find a be-
havior policy πb that max-
imizes the expected return
of the behavior. In or-
der to make the learning
tractable we rely on a pa-
rameterized stochastic pol-
icy πb = p(γ|s), where
γ is the set of parame-
ters. This parametrization
is identical for all behav-
iors b. Hence, the problem
of behavior learning is to
find a stochastic behavior-
policy πb that maximizes
the expected return

J(πb) =
�

p(s)
�

πb(γ|s)R(s,γ)dγ ds,

where the return of an episode with T steps is R(s,γ) =
T−1

�T
t=1 rt where rt denotes the rewards. We discuss our

approach in Section II-A in more detail.
For our choice of a behavior level the transition probabil-

ities for the strategy level can be approximated. Details are
given in Section II-B.

When combining the three components of behavior learn-
ing (Section II-A), strategy learning (Algorithm 1), and
determining the transition probabilities (Section II-B), we
get a complete two-level learning system. The behavior level
optimizes the parameters of the behavior to achieve the
desired transitions. The parameters determine the transition
probabilities, which need to be updated after each behavior
learning step. The strategy learning decides which behaviors
and associated explorations are safe in the current state of the
game. The complete approach is illustrated in Algorithm 2
and Figure 2.

A. Behavior Level

We assume that the behaviors are parametrized with a
small set of parameters γ that define the global behavior
of the movement. For example, in the dart throwing task
we would only consider the release position and velocity.
The actual throwing movement of going backwards and
accelerating forward on an arc would be described by an even
lower level in the hierarchy. Here, we assume this level to be

Algorithm 2: Two-Level Learning
Strategy Level:

Determine transition probabilities using Equation 1
Determine optimal policy π using Algorithm 1.

Behavior Level:
Determine optimal policy πb using Algorithm 3.
Perform behavior b = π(s) using πb

Determine cost c and next strategy-state s�



fixed. We have a stochastic policy πb = N (γ|γ̄(s),σ2(s)),
which is a Gaussian distribution with mean γ̄(s) and variance
σ2(s). This problem can be solved using the Cost-regularized
Kernel Regression [15].

The mean of the policy πb is

γ̄i(s) = k(s)T (K + λiC)−1 Γi,

where Γi is a vector containing the training examples
γi of the parameter component i, C = R−1 =
diag(R−1

1 , . . . , R−1
n ) is a cost matrix, λi is a ridge factor,

and k(s1, s2) is a kernel. The kernel corresponds to a metric
that measures the distance between the states s1 and s2.
In this paper we employ a Gaussian kernel k(s1, s2) =
exp(−�s1 − s2�2/σ2

k), where σk is the kernel width. The
matrix S contains the states of all training examples. The
vector k(s) = [k(s, [S]1), k(s, [S]2), . . .] measures the dis-
tance between the query state s and all training examples S.
The matrix K expresses the pairwise distance between all
combinations of training examples. The variance

σ2
i (s) = k(s, s) + λi − k(s)T (K + λiC)−1 k(s),

corresponds to the uncertainty of parameters. If the cost is
high, the variance is high and we assume that we are still
far from an optimal solution and, therefore, have to continue
exploring. This effect is achieved by drawing the parameters
γ ∼ N (γ|γ̄(s),σ2(s)) from the stochastic policy for each
episode. The complete algorithm is given in Algorithm 3.

B. Connecting the Levels

The rewards for the strategy learning are fixed by the
rules of the game. The possible states and behaviors also
result from the way the game is played. The missing piece
for the strategy learning is the transition probabilities. For
example when playing darts the behavior “throw at field
X” will change the state according to the points associated
with X, but if the variance is high the player will hit a

Algorithm 3: Cost-regularized Kernel Regression [15]
Initialization:

Learn the behavior by imitation and/or reinforcement learning.
Determine initial state s0, parameters γ0, and

cost C0 corresponding to the initial behavior.
Initialize the corresponding matrices S,Γ,C.
Choose a kernel k, k, K.
Set a scaling parameter λ.

For all iterations j:

Determine the state sj specifying the current situation.
Calculate the parameters γj by:

Determine the mean of each parameter i
γi(sj) = k(sj)T (K + λC)−1 Γi,

Determine the variance
σ2(sj) = k(sj , sj)− k(sj)T (K + λC)−1 k(sj),

Draw the parameters from a Gaussian
distribution

γj ∼ N (γ|γ(sj), σ2(sj)I).

Execute the primitive using the new parameters.
Calculate the cost cj at the end of the episode.
Update S,Γ,C according to the achieved result.

Fig. 3. This figure illustrates how the transition probabilities are calculated.
We have three different behaviors (red, green, and blue) with their associated
parameter value distributions (square boxes). The parameter values are
discretized. The probability of ending up in the next state corresponding
to an outcome when using the parameter bin value is given in the narrower
boxes.

neighboring field and, thus, have a different transition. The
behavior learning associates each behavior with a variance.
Each of these behaviors correspond to an expected change in
state, the outcome o. For example “aim at 10” corresponds to
“increase score by 10”. However, the parameter function does
not explicitly include information regarding what happens if
the expected change in state is not achieved. We assume that
there is a discrete set of outcomes o ∈ O (i.e., change in
state) for all behaviors b for a certain state s. For example
in a 501 game [17] in darts (the goal is to reach a score
of 0 first) hitting each field, and missing the dart board,
is associated with either lowering the player’s, winning or
to bust (i.e., going below zero and continuing on with the
previous score the next turn). With the parameter function,
we can calculate the overlaps of the ranges of possible
parameters for the different behaviors. These overlaps can
then be used to determine how likely it is to end up with a
change of state associated with a behavior different from the
desired one. This is illustrated in Figure 3. There we have
three different behaviors and their associated parameters. The
red and the blue behaviors have the same mean and, thus, it is
very likely that the transitions resulting from these behaviors
will be similar. Picking the green behavior is likely to result
in the predicted outcome, as its associated parameters are
fairly distinct from the two other behaviors. This approach
relies on the assumption that we know for each behavior the
associated range of parameters and their likelihood.

The parameters are drawn according to a normal distribu-
tion, thus the overlap has to be weighted accordingly. This
is illustrated in Figure 4. The probability of the outcome o
when performing behavior b can be calculated as follows:

Pb
so =

�
pb(γ)

po(γ)�
k∈O

pk(γ)
dγ, (1)

where γ is the parameters, pb(γ) is the probability of picking
the parameter γ when performing behavior b, po(γ) is the
probability of picking the parameter γ when performing
the action associated to the considered outcome o, and



(a) Behavior 1 selected (b = 1). (b) Behavior 2 selected (b = 2). (c) Behavior 3 selected (b = 3).

Fig. 4. This figure illustrates how the transition probabilities are calculated. The probabilities from Figure 3 need additionally to be weighted with the
probabilities of choosing this value when selecting one of the behaviors. E.g., Figure 4(a) illustrates the result of picking behavior 1. The next state is
going to be the one associated to the left behavior in 59% of the cases, with the middle next state with a probability of 4% but in the right next state in
37%. In contrast, if we pick behavior 2 (Figure 4(b)) we are going to get its associated transition in 79% as its parameter set is very different to the other
ones.

�
k∈O

pk(γ) is the normalizing factor.

III. EVALUATIONS

A scenario where our framework is applicable is funfair
games. These games usually have the setup that you perform
some motor skill game and, if you were successful, you are
awarded a prize. Examples of funfair games include throwing
balls at coconuts, basket ball hoops, buckets, or tin cans,
shooting with rifles or darts, as well as fishing or bowling like
activities [18], [19]. Most players are not willing to spend a
lot of money to improve their game but rather use a safe strat-
egy. For our evaluation we require a game that has several
higher level actions and we have chosen a game inspired by
a side-stall game and blackjack, see Section III-A for details.
We evaluate this game both in simulation (Section III-B) and
on a real BioRob (Section III-C). The transition probabilities
were obtained using numerical integration.

A. Description of the Side-Stall-Style Game

The game is reminiscent of blackjack as the goal is to
collect as many points as possible without going over a
threshold. The player throws a ball at three targets. The three
rewards of one, two, and three are assigned to one target

Fig. 5. This figure illustrates the side-stall game. The player throws the
ball and if it lands in the target (illustrated by a wall with target holes) gets
the number of points written next to it. Missing the targets is not punished,
however, going over ten points leads to a loss of ten points.

each. If the ball lands in the target, the player receives the
corresponding number of points. The player starts with zero
points if he gets more than 10 points he “busts” and incurs
a loss of -10. The player has the option to “stand” (i.e., stop
throwing and collect the accumulated number of points) at
all times. Missing all targets does not entail a cost.

The game can be modeled as an MDP where the states
consist of the number of accumulated points (zero to ten) and
two additional game states (“bust” and “stand”). The actions
correspond to attempting to throw at a specific target or to
“stand”. The rewards are fixed according to the rules of the
game and the transition probabilities are estimated based on
the learned behavior to parameter mapping.

B. Evaluation in Simulation
We first evaluated our approach using a MATLAB based

simulation. The throw is modeled as a two dimensional
ballistic flight of a point mass. The targets correspond to
segments of the ground line. The parameters are the initial
horizontal and vertical velocities of the ball. The parameters
used to initialize the learning make the ball drop in front of
the first target. The cost function for the behavior level is
the sum of the squared initial velocities and the distance
between the desired and the achieved outcome. Figure 6
illustrates how the player learns to throw more accurately
while playing. Figure 7 illustrates how learning to perform
the lower level actions more reliably enables the player to
perform better in the game.

C. Evaluation on a Real BioRob
We employ a BioRob to throw balls in a catapult like

fashion. The arm is approximately 0.75m long, and it can
reach 1.55m above the ground. The targets are located at
a distance of 2.5m from the robot at a height of 0.9m,
1.2m, and 1.5m respectively. The ball is placed in a funnel-
shaped receptacle. The parameters are duration and amount
of acceleration for two joints that are in the throwing plane.
The robot starts in a fixed initial position, accelerates the two
joints according to the parameter indicating the magnitude,
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Fig. 6. This figure illustrates the transition probabilities of the three
behaviors to their associated outcome in simulation. For example, the red
line indicates the probability of gaining one point when throwing at target 1.
After approximately 50 throws the player has improved his accuracy level
such that he always hits the desired target. The plots are averaged over 10
runs with the error-bars indicating standard deviations.
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Fig. 7. This figure illustrates the improvement of the player over the
number of games in simulation. Due to the large penalty for busting the
framework always uses a safe strategy. Already after five completed games
the player reaches almost always the maximum possible score of 10. As the
number of throws is not punished there are initially many throws that miss
the target. After 7 games the number of throws has converged to 4, which
is the minimum required number. The plots are averaged over 10 runs with
the error-bars indicating standard deviations.

and accelerates in the opposite direction after the time
determined by the other parameter in order to break. Finally
the robot returns to the initial position. See Figure 9 and the
attached video for an illustration of one throwing motion.

Executing the throw with identical parameters will only
land at the same target in approximately 60% of the throws,
due to the high velocities involved and small differences in
putting the ball in the holder. Thus, the algorithm has to
deal with large uncertainties. The cost function for the lower
actions is the sum of the squared acceleration magnitude, the
squared acceleration duration, and the distance between the
desired and the achieved outcome. The three components
are normalized to lie in the same range. The setup makes
it intentionally hard to hit target 3. The target can only be
hit with a very restricted set of parameters. For targets 1
and 2 increasing the amount of acceleration or the duration
will result in a higher hit. Target 3 is at the limit where
higher accelerations or longer durations will lead to a throw
in a downward direction with a high velocity. In combination
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Fig. 8. This figure illustrates the transition probabilities of the three
behaviors to their associated outcome on the BioRob similar to Figure 6. The
skill improves a lot in the first 15 throws after that the improvement levels
off. Initially action 2, associated with target 2 (which lies in the center) is
most likely to succeed. The success rate of 60% corresponds to the level of
reproducibility of our setup. The framework manages to handle this large
uncertainty by choosing to stand early on. The plots are averaged over 4
runs with the error-bars indicating standard deviations.

with the behavior level cost function, which favors parame-
ters that hit target 1 or 2, it is not surprising that at the end of
the learning process target 3 is not hit frequently. The robot
successfully learns to consistently score 9 or 10 points with
five throws. Figure 8 illustrates how the robot learns to throw
more accurately within the physical limits of the system.

The typical behavior of one complete experiment is as
follows: At the beginning the robot explores in a fairly large
area and stands as soon as it reaches a score of 8, 9, or
10. Due to the large punishment it is not willing to attempt
to throw at 1 or 2 while having a large uncertainty, and,
thus, a high chance of busting. Later on, it has learned that
attempting to throw at 2 has a very low chance of ending up
in 3 and hence will attempt to throw 2 points if the current
score is 8. We setup the policy iteration to favor behaviors
with a higher number, if the values of the behaviors are
identical. The first throws of a round will often be aimed at
3, even if the probability of hitting target 2 using this action
is actually higher than hitting the associated target 3. Until
8 or more points have been accumulated, action 3 is safe
(i.e., cannot lead to busting), does not entrain a punishment
if missing or hitting a lower target, and has a large learning
potential.

IV. CONCLUSION

In this paper, we have introduced a framework that al-
lows a player to work on his skill regarding the individual
components of game-play while maintaining a satisfactory
level of success at the general game. This setup is especially
applicable for casual games where the players learn during
playing and do not resort to fine-tuning there performance
by practicing skills separately.

The framework is composed of two levels: the strategy
level and the behavior level. The strategy is learned using
Policy Iteration [2]. The behaviors are learned using Cost-
regularized Kernel Regression [15]. The two levels are
coupled by the transition probabilities of the strategy level,



(a) The initial position. (b) The robot accelerates in the
shoulder and elbow joints.

(c) End of acceleration. The break-
ing starts.

(d) The robot slows down while the
ball flies towards the target.

(e) The robot has stopped and re-
turns to the initial position.

(f) The robot is again in the initial
position, ready for the next throw.

Fig. 9. These frames of the accompanying video illustrate one throwing motion with the BioRob.

which can be estimated from the learned parameters of the
behavior level.

We have evaluated the setup on a side-stall-style game
both in simulation and with a real BioRob. The real robot
experiment had to deal with high uncertainties due to the
limited reproducibility of the throws. The system manages
to handle this issue well by not attempting high risk actions.
An interesting alternative for future research would be to try
to learn equifinal paths. These are paths the lead to the same
outcome even if there is some variation in the execution. This
strategy has been observed for human dart players [20].
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