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Learning Movement Primitives for Force Interaction Tasks

Jens Kober!, Michael Gienger?, and Jochen J. Steil?

Abstract— Kinesthetic teaching is a promising approach to
acquire robot skills in an intuitive way. This paper focuses on
learning skills that do not solely rely on kinematics but also need
to take into account interaction forces. We present three novel
concepts towards learning such force interaction skills. Firstly,
we determine segments from a small number of continuous
kinesthetic demonstrations using contact information. Secondly,
we associate each segment with a movement primitive, and de-
termine its composition, i.e., the control variables and reference
frames that allow to reproduce the demonstrated task. Lastly,
we propose a concept to determine the transitions between
the primitives during reproduction. The proposed methods
are evaluated on a box pulling and flipping task, and show
very good generalization abilities for objects with different
geometries, and situations with different object arrangements.

I. INTRODUCTION

Compliant manipulation is a hot topic in robotics research.
It has received significant attention in the scientific community,
both driven by its potential in various fields of application,
and by the development of affordable and reliable robots
with compliant control abilities [1]. In particular, torque-
controlled robots offer advantages. Their backdriveability
allows kinesthetic teaching, while recording both kinematic
movement data and interaction forces with a wrist force-
torque (FT) sensor. Other than with robots that are controlled
actively compliant, the force measurements are undisturbed if
taught appropriately (moving the links before the FT sensor).
In addition, there is no need for mapping demonstration data
between different embodiments (correspondence problem).
Finally, it is intuitive to kinesthetically train a robot to
perform interaction tasks, so that extensive programming
can be avoided [2].

This opens up a wide range of interesting questions. In
this paper, we focus on imitation learning of sequential
movement tasks that can be represented by a sequence of
elementary movements (movement primitives). The primitives
are composed of a set of control variables, and can contain
kinematic and force modalities. We propose an approach to
simultaneously determine the composition (control variables)
and parameters (attractor goals) in order to reconstruct and
explain the observation data best.

The presented concepts are evaluated in a “pull and flip”
task with a Barrett WAM robot, where the learned sequence
generalizes to unseen initial positions and unseen box sizes,
see Figs. 1 and 2 for an illustration. The underlying methods
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Fig. 1.

Kinesthetic learning of a “pull and flip” task

have the potential for other tasks, such as screwing, joining
of parts, or simple assembly tasks in the industrial domain.

A. Related Work

The approach presented in this paper approach covers
the whole process of getting from human demonstrations to
a robotic skill, with a particular focus on determining the
movement primitive (MP) composition. Related papers often
treat some sub-aspects of this process in isolation.

Decomposing the demonstrations into simpler sub-
movements, also called segmentation has been studied exten-
sively. Most previous work focuses on kinematic demonstra-
tions. This problem is also highly relevant in the computer
graphics domain, e.g., [3] employs principal component
analysis to segment motion capture data. Similarly, non-
negative matrix factorization has been employed in the
robotics domain [4]. Alternatively probabilistic models can
be utilized, e.g., [5] has employed hidden Markov models.
Skill learning from visual observations via semantic event
chains [6] does not directly yield a representation suitable
for skill reproduction. Our approach is more closely related
to [7] where correlative features between the hand and
objects, which indicate whether an object is being manipulated
actively, are used to detect segmentation points. Also from
a biological point of view such contact events are highly
relevant for dextrous manipulation [8]. We employ MPs based
on linear attractors without additional modulation [9] that are
comparatively easy to detect but might require more MPs to
represent a movement than more complex MP representations.

Various representation and teaching methods for move-
ments that need to consider force or compliance have been
proposed. The weights of dynamic movement primitives
(DMPs) [10] can be adapted in order to achieve a desired
force profile [11] or additional modulation terms can be
introduced [12]. Reinforcement learning has been employed
to adapt finely discretized force trajectories to the desired
task [13]. Force demonstrations can be supplied separately
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Fig. 2. This figure illustrates an example of the “pull and flip” task. The robot moves towards the object @, pulls the object towards the stop @, moves
behind the object ®-@, flips the object up @, and finally moves away from the object ®@. Blue arrows indicate kinematic movements, the red ones applied

forces.

using a haptic device as in [14] while [15] describes an
interface for adapting stiffness online through human robot
interaction. Similar to [16], [17] we simultaneously teach
positions and forces by kinesthetic teach-in and employ
linear dynamical systems as representation. Smooth transitions
between consecutive DMPs have been studied in [18].

The sequence of MPs can be specified by hand [9],
determined by motion planning [19], learned by reinforcement
learning [20], [21] or extracted from demonstrations [16],
[22]. Here we only consider a linear sequence and extract
termination conditions from the demonstrations.

In most approaches, the composition of the learned MPs
is defined by hand. The authors of [23] employ an Inverse
Optimal Control approach. Other recent work applies statisti-
cal methods and prior task knowledge to find the appropriate
task space composition [24].

There are only very few papers that propose approaches
that address several of these topics simultaneously: Based on
inter- and intra-demonstration variance [17] segments motions
as well as assigns a reference frame and control modality.
The extractedMPs are learned by SEDS [25]. How transitions
between the MPs are handled is not discussed. The system is
evaluated in a vegetable grating task.

In contrast, [16] considers pre-segmented MPs. The em-
ployed DMPs effectively encode the mean of the demonstra-
tions while the reference frame and the control modality are
specified by hand. Once a MP has finished its movement or
when a deviation from the demonstrations is detected, the
MP is executed for which the observed starting sensor values
match the current ones best. This framework is illustrated by
the DARPA ARM drilling task.

In [20] only kinematic control is considered. The demon-
strations are segmented by change point detection. The indi-
vidual MPs are modeled as controllers functioning as attractors
that act on automatically selected relevant dimensions. The
robot learns to navigate a maze via reinforcement learning
where the MPs are considered to be options [26].

II. MOVEMENT PRIMITIVE LEARNING

In this section we will discuss the teaching procedure
(Sect. II-A), as well as the four steps of our approach:
The raw demonstrations are first aligned (Sect. II-B) and
then segmented into candidate MPs (Sect. II-C). Our main
focus lies on determining the MP composition (Sect. II-D).
Finally we present a first proof of concept to determine the
transitions between the recovered MPs (Sect. II-E). All steps
are illustrated in Fig. 3 for a simplified example.

A. Kinesthetic Demonstrations

As method for demonstrations we are employing kinesthetic
teach-in. By directly moving the robot through the task
in gravity compensation mode, we do not have to solve
the correspondence problem. In contrast to motion capture
it is straightforward to record all the sensory information
(especially the occurring forces) during demonstrations. For
each time step of an observation, we record a vector q =
(q1---qa fu-..mz0f ...0F)T comprising d joint angles,
six interaction forces and torques at the FT sensor, and
transformation vectors o of the k objects in the scene.

In a second step, we project these data on a vector of n
pre-defined task variables x = (1 ...2,)T = f(q). The task
variables capture the positions, orientations and interaction
forces of the end effector in the world coordinate system, or
in one of the absolute or relative coordinate frames of the
objects that are part of the scene (see Fig. 3). They solely
depend on the configuration vector q of the scene. Task-
level forces are compensated for the gravity forces of the
robot links distal to the sensor. One out of the m kinesthetic
demonstration comprises T, time steps X = (x7,...,x7. ),
so that after the kinesthetic teaching, we have m task-level
demonstrations X ,,.

B. Alignment

The multiple demonstrations X ,, usually differ slightly
in timing and movement velocity (see Fig. 3). In order to align
those we employ Dynamic Time Warping (DTW) [27]. DTW
aligns the demonstrations in time according to a similarity
measure. For the tasks we are interested in, there is often a
significant variation in the position dimensions, e.g., caused
by different starting positions of an object, which needs to
be reflected in the weights of the individual data dimensions
in the similarity measure. We therefore assign high weights
to force norms and velocity norms as well as to a binary
feature that indicates whether the robot is in contact with the
environment or not (see Sect. II-C).

C. Segmentation

Intuitively, getting into contact with the environment or
an object as well as coming to a halt, mark transitions in a
sequence of movements (see Fig. 3). For switching between
position and force control it is also very important to detect
contact changes. The aligned demonstrations are segmented
jointly.

Potential segmentation points are added if there is a contact
event or when the movement starts or stops. The latter
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This figure illustrates the overall process of our approach. Please

refer to the corresponding sections for details.
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Fig. 4. This figure illustrates the basic idea of our approach. Demonstrations
in different reference frames exhibit different convergence behavior: If the
end-effector starts at a fixed position and moves towards the object, the
demonstrations diverge in z-direction in world coordinates but converge in
object coordinates. In z-direction they behave identical in both reference
frames.

zero velocity crossings are especially relevant for free-space
movements. The former can be detected in a variety of ways:
considering correlations between hand and object movements,
or sensor information related to touch. In the presented
experiments we employed a threshold on the force norm.
Segmentation points stemming from the zero velocity
crossing and contact events often occur together but are not
perfectly aligned. Therefore, we merge segmentation points
that differ only in a few frames in a post-processing step.

D. Movement Primitive Composition

Each of the detected segments is treated as a separate
MP. Semantically identical MPs could be merged before the
reproduction based on the similarity of their composition
and goals. The core of our method lies in figuring out the
most plausible composition of the Mp. That is, we want to
a) assign each MP a reference frame in which it acts and
b) assign each individual coordinate within this reference
frame a control modality, i.e., force or position control.
Our MP representation is based on linear attractors [9], i.e.,
first order dynamical systems with a velocity limit, and
without additional modulation. This representation results
in movements that converge to a point. The basic idea of
our approach is to use the convergence behavior of the
demonstrations in the candidate reference frames to determine
the best match.

For example if the end-effector always starts at the same
position and is then moving towards an object that can be
placed at arbitrary locations, we will observe a convergence
behavior in object coordinates while the demonstrations are
diverging in world coordinates (see Fig. 4). A converging
behavior is characterized by a decrease in inter-demonstration
variance over time, a diverging behavior by an increase in
inter-demonstration variance.

Similarly if the demonstrations diverge in both reference
frames, the one with the lower end variance is preferable.

In between converging and diverging behaviors we have
the case where the inter-demonstration variance stays almost
constant. This corresponds to a directional movement, i.e.,
a shift with constant velocity. This type of behavior occurs
frequently when holding a position or force in the considered
dimension. Also here we favor the frame with less variance.



To sum up, we prefer a converging behavior over a shifting
behavior over a diverging behavior.

In our discussion so far we have concentrated on kinematic
tasks, but we can also include the choice of modality by
comparing the convergence behavior of the position values
to those of the force values. For doing so we have to take
into account the different scaling of the demonstrated values'.
Similarly, if comparing reference frames with different types
of coordinates we have to keep in mind the scaling, e.g., when
comparing Cartesian coordinates and cylindrical coordinates.

1) Scores: We calculate a score for each candidate frame
based on statistics obtained from the demonstrations. The
number of candidates is determined by the number of
reference frames, the dimensionality of the coordinate systems,
and the number of modalities we consider. For example, if
we have four reference frames with three dimensions each
and differentiate between force and position control, we need
to calculate 4 x 3 x 2 = 24 score values (see Fig. 3).

The score is based on the change in variance as well as the
end variance. Based on these scores we find the combination
of candidates that matches the demonstrations best.

In order to calculate the scores we first fit two linear models
to each candidate. These represent the respective mean and
standard deviation as a function of the aligned time?. Next
we determine how well the candidate matches each of the
three behaviors explained above. We calculate two factors that
can be seen as pseudo-probabilities for each behavior. The
first factor expresses whether the candidate shows the desired
convergence behavior, e.g., for the converging behavior it
depends on how much the standard deviation decreases over
time and we have

. d -
Dconverging_strongly = Cllp[(),l] _04£ std (Xdemo) y

where 4/dt std (Xgemo) is the change in the standard deviation
according to the linear model, clipjin may () ensures that
the resulting value is bounded between a maximum and a
minimum, and « is a scaling factor that allows to change the
cut-off at which we are certain to have a converging behavior.
Instead of the linear function with cutoffs, we could also
employ a sigmoid function similar to logistic regression. For
the shifting behavior we evaluate how constant the standard
deviation stays over time and for the diverging behavior how
much it increases.

The second factor expresses how favorable the behavior
in the demonstrations is. Taking again the example of the
converging behavior we want to prefer candidates with low
final standard deviations, e.g.,

pconverging,favorably = Clip[o,u (]- - 5 std (gdemo,end)) )

where std (Zdemo,end) is the standard deviation at the end of
the segment according to the linear model and 3 a scaling

'A standard deviation of 0.01 m for position tasks is for example roughly
equivalent to a standard deviation of 1N for force tasks in our “pull and
flip” skill.

2We employ L1 linear regression in order to improve robustness w.r.t.
outliers that occur frequently at the start and at the end of a segment due to
imprecise alignment and segmentation.
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Fig. 5. This figure illustrates an ambiguity in the reference frames. The
upward movement can be represented equally well in stop and object
coordinates. However, if the flipping movement failed it is more desirable to
move in stop coordinates, which cannot be extracted from the demonstrations
as they do not contain failures.

factor that determines how large the final standard deviation
can be maximally. For the shifting behavior the equivalent
factor depends on the overall standard deviation, for the
diverging behavior we employed a combination of low final
standard deviation and how similar the movement directions
of the demonstrations are. The open parameters are chosen
such that they cover the range of behaviors observed in the
demonstrations.
The complete score for each behavior is then

DPoehavior = 7] Ybehavior Pbehavior_strongly Pbehavior_favorably -

As we will discuss in Sect. II-D.5 we need to assign
different priors for the modalities and reference frames to
resolve ambiguities, which corresponds to the factor 7. The
factor Ypenavior Can be seen as a prior for the individual
behaviors. In our experiments we employed Yeonverging = 100,
Yshiting = 10, and “diversing = 1. As the demonstration
data is noisy we never get a perfectly constant standard
deviation corresponding to the shifting behavior. Therefore
we allow some overlap between the behaviors and assign
max (Peonverging» Pshifting» Pdiverging) as the global score for the
candidate. We also employ this mechanism to decide whether
to use a MP based on a position attractor or a velocity attractor.

2) Modality Selection: First we select a modality per
coordinate, i.e., whether the coordinate is force or position
controlled, by selecting the modality with the maximum score
for each coordinate of each reference frame (see Fig. 3). Now
we are only left with the choice of the reference frame.

3) Reference Frame Selection: In this paper, we restrict all
dimensions to be of the same reference frame. We calculate
the sum of scores over the dimensions of each reference
system in order to pick the best reference frame (see Fig. 3).

4) Parameter Selection: Finally, the MPs’ parameters for
the attractor (i.e., position, velocity, or force) and the velocity
limit are obtained via linear regression.

5) Ambiguities & Priors: Obviously, with an increasing
number of reference frames and types of control, the pos-
sible number of combinations increases very quickly. This
introduces ambiguities where the reference frames behave
essentially equivalently. An example is illustrated in Fig. 5.
If a human were to decide upon the best reference frame, he
or she would additionally take into account further criteria
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Fig. 6. This figure illustrates how the termination intervals are extracted
from demonstrations.

such as generalization properties or error recovery properties.

This is a general problem of learning from demonstrations
which can be solved by introducing priors, by collecting more
training data to disambiguate the choice, or by evaluating
the reproductions. We suggest to incorporate some priors,

however in a rather generic form for the class of tasks at hand.

Firstly, we take into account that it is undesirable to have a
force controlled component if we are not in contact with the
environment as this could lead to dangerous accelerations.
Secondly, if several reference frames have the same scores,
we select the candidate that is associated with the object with
the slowest dynamics, e.g., we prefer the world coordinate
frame over the object frame, and objects with larger masses
over those with lower ones.

E. Transitions within the Sequence

To reproduce the learned skill, we need to decide when
to change from one MP to the next one. Currently we only
consider linear sequences, therefore it is sufficient to detect
when we need to switch to the next MP. Our MP representation
is time-independent and only the position attractors have an
explicit target. Similar to options [26] termination conditions
or transition regions can be defined. The current features of
the MP are compared to the values of the features at which
the demonstrations terminated. In this paper, we employ the
dimensions controlled by the current and subsequent MP as
our features. For example, a “moving down” MP would be
terminated if the height gets below a height limit observed in
the demonstrations. Here we have to strike a balance between
switching too early and not switching at all, especially when
generalizing to unseen regions.

As a proof of concept intervals based on the features which
spans the values at which the demonstrations terminated (see
Fig. 6) are automatically constructed. Dimensions where the
MP only holds the position or force are discarded for better
generalization. This approach naturally includes the attractor
targets while adding additional safeguards when the transition
involves a switch in reference frames.

In a related project we are exploring more advanced models
for transitions [22] where we include the possibility to have
branching and repetitions. There the possible successor MPs
are encoded in a transition graph where each node has an
associated classifier that determines when to determinate the
current MP and to which MP to switch next. We are currently

working on integrating this more advanced transition model
with the presented framework.

III. MOVEMENT REPRODUCTION

In order to control force and kinematic control variables
simultaneously, we employ a hybrid position-force control
concept based on a task-level inverse dynamics approach
previously described in [9]. The desired joint torque T is

T:MJ#S(aw—jQ>
+JT(I—S)af—|—MJ# (I-1S) (ad—j(l)
—M(I—J#J)£+g+h- M

Vector a, contains a PID control law based on a vector
of augmented kinematic task descriptors (reference frame
and control modalities of the MP) and their time derivatives.
Vector ay comprises the desired forces with an associated
task-level damping term ay. Each of the task elements can
be represented in various frames of reference as described
in Sect. II-A. The diagonal selection matrix S enables either
kinematic or force components of a task variable in the spirit
of a hybrid position force controller [28]. Vector £ accounts
for joint speed damping and joint limit avoidance and is
projected into the null space of the movement.

Vectors g and h comprise the gravity and Coriolis forces,
M denotes the mass and inertia matrix, J and J # are the
Jacobian of the task and its pseudo inverse. The pseudo
inverse is scaled with a weighting matrix, which allows to
continuously modulate the contribution of each task variables.
Our approach allows for an arbitrary number of possibly
conflicting tasks. However, here we only partition linearly
independent tasks between the control modalities, and leave
the conflict resolution between dependent task variables to
the task frame selection.

As representation of the individual MPs we chose linear
attractors. The attractor dynamics are driving the desired
positions, velocities and forces (control modality) of the MP’s
reference frame, which enter the controller equation (1) as
terms a, and ay (see Fig. 3). For example, a position MP
determines the desired velocity x4.s based on the difference
between the current position and the MP’s goal as well as on
the velocity limit. The first order dynamical system yields the
desired position Xg4es. Finally, the PID control law is applied
to obtain a, from Xges and Xges.

IV. EXPERIMENTS

In this section we will discuss how the proposed approach
performed on the “pull and flip” task experimentally. In
Sect. IV-A we give a brief overview of the setup, in Sect. [V-
C we contrast our method to the criterion from [17], and in
Sect. IV-B we show how our approach performed on various
demonstration sets.

A. System, Modalities & Reference Frames

As discussed in Sect. III we employ a hybrid position-
force control concept. Hence we can control an individual



Fig. 8.

This figure illustrates one kinesthetic demonstration and the learned “pull and flip” skill. The behavior was learned with demonstrations with the

large object only. It generalizes to a different object size and unseen initial positions.
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Fig. 7.  This figure illustrates the coordinate frames employed in the
experiments. There are Cartesian coordinates in the world reference frame,
relative to the object, and relative to the stop, as well as cylindrical
coordinated relative to the stop.

coordinate either in position or force mode. For our scenario
we defined four candidate reference frames, see Fig. 7. The
first one is the end-effector in world coordinates, the second
one is the end-effector relative to the object, the third one
relative to the stop. Please note that all relative reference
frames are not only shifted but also rotated with the reference
object. The former reference frames are all in Cartesian
coordinates. Finally, we have a reference frame relative to
the stop in cylindrical coordinates. Its axis is aligned with the
long side of the stop. The cylindrical coordinates work very
well for many kinds of rotatory movements (e.g., opening
doors) and are very robust w.r.t. inaccuracies in the rotation
axis if is combined with force control.

The position and orientation of the stop and the object are
tracked using a Polhemus Liberty electromagnetic motion
tracker system. The robot distorts the magnetic field signifi-
cantly and there can be errors up to approximately 0.07 m.
The robot is a torque controlled Barrett WAM with a Barrett
FT sensor at the wrist. The metal end-effector is coated in
order to increase friction between it and the object while the
underside of the object has a low friction material.

B. Results

We collected nine demonstrations each with a larger
object (0.2m x 0.2m x 0.066m) and a smaller object
(0.12m x 0.15m x 0.065m) including various initial posi-
tions of the object and varied the orientation and position
of the stop (0.25m x 0.8 m x 0.08 m). Our approach was

-

Fig. 9. This figure illustrates the generalization capabilities of the learned
“pull and flip” skill. The skill generalizes to unseen positions and orientations
of the stop, unseen initial positions of the object, as well as different object
sizes.

evaluated on each data set individually and on the combined
data. The resulting sequence consists of 14 MPs for the skills
learned from the large and combined object sizes and 13 MPs
for the small one. The MPs match the structure given in Fig. 2
while some MPs were split and we have some additional MPs
where we paused briefly during the demonstration.

All learned MPs managed to successfully reproduce the
demonstrated behavior and to generalize to unseen initial
positions of the object and stop (see Fig. 9 and the attached
video). The skill trained with the larger object sizes manages
successfully to generalize to the smaller object size as we have
demonstrated a movement pushing the object horizontally
against the stop in between @ and @. If this MP is not
demonstrated and the object was not very close to the stop
after @ , flipping up the box @ often fails as the robot moves
up too quickly and looses contact with the object. Hence,
we included this pushing behavior in the demonstrations to
compensate for imperfect reproductions of the pull, which
the additional benefit of generalizing to smaller boxes. For
the skill trained with the smaller box, moving behind the
object @ fails with the larger object as the learned position
is relative to the stop and too close for the larger object. The
skill learned from the combined data set copes nicely with
both object by pulling the object @ until they hit the stop
irrespective of their size.

For all experiments the movement towards the object @ was
expressed in the reference frame relative to the object, and



Fig. 10. This figure illustrates the recovered pulling MPs ®. When training
with the demonstration set containing only one box size, we get position
attractors. Please notice the gap in the left snapshot. When training with the
combined demonstration, we get a force MP.

the flipping movement @ in cylindrical coordinates relative
to the stop. For most other MPs the Cartesian or cylindrical
reference frames relative to the stop where chosen. All pulling
movements @ employ a downward force and all flipping
movements & a force in radial direction.

However, there are some noticeable differences between
the MPs resulting from the three training sets. For the pulling
movement @ of the skills resulting from the single object
sizes the approach chose position attractors relative to the
stop, which results in the generalization properties discussed
above (see Fig. 10). For the combined training set we got a
MP that increases the force in horizontal direction until the
object hits the stop. This force-based pulling is less robust
as the downward force needs to be strong enough to avoid
slippage of the end-effector, which accelerates rapidly once it
has lost contact. This is also the only MP where the extracted
transitions failed consistently.

For moving behind the object @, the two data sets with the
single box size resulted in MPs that are moving to an absolute
position relative to the stop, for the combined set we get a
directional movement where again the burden of stopping at
the correct point is placed on the transition mechanism. Given
the simplistic nature of the transition mechanism it worked
surprisingly well. As we are taking the whole interval of
demonstrated end points, transitions sometimes occurred too
early (e.g., for moving behind the object in the skill learned
from the combined set) or were sometimes not detected at

all when starting far from the demonstrated initial conditions.

Ignoring the pulling and moving behind MP of the combined
data set, the transitions failed less than 10%.

C. Comparison: Alternative Criterion

Of the papers discussed in Sect. I-A, [17] is the closest to
the focus of our approach. The paper describes a criterion
for selecting the best reference frame, the best modality, and
for segmenting the demonstration. It is defined as

C' = valintra — Valinter,

where varijn:, 1S the variance over a time window (i.e.,
how much the variable changes over the course of a single
demonstration) and varjnier iS the variance over trials (i.e.,
how similar the demonstrations where). We applied this
criterion to our data in order to evaluate the respective
benefits and shortcomings of the methods. The open scaling
parameters and window sizes where tuned by hand.

In contrast to their paper, the MPs we want to learn based
on the segmentation and detected composition are a lot less

a) Demonstrations b) Reproductions

primitive 1 { primitive 2

X [ il
—
T —| —
t
world/ reference frame

Fig. 11. Movement in z-direction of the toy example (Fig. 4 or @ in Fig. 2).
a) Demonstrations b) Reproductions resulting from the criterion in [17].

expressive, hence, a coarser segmentation would be sufficient
for the approach in [17]. Contrary to this observation, the
proposed criterion tends to over-segment our data. Let us
take a look at the example from Fig. 4 again. In Fig. 11a
we have plotted the converging and diverging behavior of
the x-coordinate. The intra-demonstration variance varinira
is going to be constant over the whole time and have the
same value for both reference frames. Therefore, C' depends
only on the variance over the trials varj,te;. The one related
to the object reference frame is decreasing, the other one
increasing. Initially the criterion would choose the world
reference frame (as it has a smaller variance) and then switch
to the object reference frame after 50% of the time. As a result
we would get two MPs, where initially the position is held
or would diverge randomly, and then the end-effector would
move rapidly towards the object. This example illustrates
the problems we encountered with the purely statistics-based
segmentation and deciding upon the composition of a MP
by comparing variances without taking into account the
convergence behavior of the movement. Fig. 12 illustrates
the same problem on real data.

Furthermore, introducing segmentation points both for
switches in the reference frames and the modalities separately
resulted in rather small MPs. Therefore the resulting skill will
need to rely more on the transition mechanism than on the
MP representation. The approach often picks force MPs even
if the robot is moving in free-space, which would also have
to be discarded in an additional step. We manged to find
parameters that resulted in reasonable MPs for parts of the
sequence but could not get it to run on the whole sequence.

V. CONCLUSION

We have proposed a number of concepts that allow to
acquire force interaction skills for robots from a small
number of kinesthetic demonstrations. The demonstrations
are decomposed into our notion of attractor-based Movement
Primitives (MPs) using contact information. The main novelty
of this paper is to acquire a task-level representation for
the MPs which gives it the ability to generalize to different
situations, such as to objects with different geometrical or
physical properties, and to different arrangements of the
objects in the work space. We propose an approach that
combines statistical and prior information to disambiguate
the MPs reference frame, and the controlled variables within
the selected frame. To reproduce the demonstrated skills, we
apply a data-driven way to determine the transitions between
MPs, and a hybrid position/force controller to track the forces
and positions coming from the MPs attractor dynamics.
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Fig. 12. Results of the criterion of [17] on real world data. Left: raw demonstrations, Middle: variance over trials, sliding variance within a trial, and

resulting criterion, Right: selected reference frames.

The concepts have been evaluated in a box pulling and
flipping task, and show very good generalization abilities
for objects with different sizes, masses, and situations with
different object arrangements. The system can generalize the
learned skill to unseen situation as shown in our box pulling
and flipping experiments.
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