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Abstract—Several recent works show impressive results in
mapping language-based human commands and image scene
observations to direct robot executable policies (e.g., pick and place
poses). However, these approaches do not consider the uncertainty
of the trained policy and simply always execute actions that are
suggested by the current policy as the most probable ones. This
makes them vulnerable to domain shift and inefficient in the
number of required demonstrations. We extend previous works
and present the PARTNR algorithm that can detect ambiguities in
the trained policy by analyzing multiple modes in the probability
distributio of pick and place poses using topological analysis. In this
way uncertainty in action can be estimated with single inference
(and training single model) instead of using ensemble of models.
Additionally, PARTNR employs an adaptive, sensitivity-based,
gating function that decides if additional user demonstrations are
required. User demonstrations are aggregated to the dataset and
used for subsequent training. In this way, the policy can adapt
promptly to domain shift and it can minimize the number of
required demonstrations for a well-trained policy. The adaptive
threshold enables to achieve the user-acceptable level of ambiguity
to execute the policy autonomously and in turn, increase the
trustworthiness of our system. We demonstrate the performance
of PARTNR in a table-top pick and place task.

I. INTRODUCTION

Despite the numerous exciting results in robot learning, only
a few methods are actually robust enough to be employed in
everyday life. Many manipulation tasks, such as pick-and-place
in household scenarios, are challenging for robots, while they
are actually easy for humans. To overcome this performance
mismatch, we can exploit the human domain knowledge through
(interactive) imitation learning [1]. This requires novel methods
with an intuitive interface to transfer non-expert user knowledge
to robotic systems. The impressive capabilities of recently
introduced foundation models can possibly ease this transfer
of knowledge. Foundation models can be trained on language
data only (e.g., Transformers [2], BERT [3], or GPT-3 [4]) or
can be trained on multi-modal data, such as images and their
captions (e.g., CLIP [5]). In the field of robotics, language
foundation models can be used for task planning [6] and
interpreting human commands [7], [8] as well as corrections [9].
In particular, in the setting of (interactive) imitation learning,
it is a natural choice to exploit language foundation models,
since it allows the user to give instructions or corrections in
an intuitive manner. Interactive imitation learning is a subclass
of imitation learning in which the human is influencing the

learning loop while executing the task [1]. To be practical and
trustworthy, the robot should ask for help when it is uncertain
about the outcome of its actions. At the same time, humans
should not be bothered too much. In this work, we address this
problem by introducing Pick and place Ambiguity Resolving
by Trustworthy iNteractive leaRning (PARTNR). Our work is
related to the seminal work that introduced dataset aggregation
(DAgger) for imitation learning [10]. DAgger addresses the
compounding errors in imitation learning caused by covariate
shift through the collection of on-policy data. Many variants
were introduced afterward, such as Human-Gated DAgger (HG-
DAgger) [11], where the expert can take over control if deemed
necessary, and Ensemble-DAgger[12], where the robot queries
expert input when a novel or risky situation is faced. Regarding
the ambiguity resolution, our work is related to LIRA [13]
which treats ambiguities in discrete reference frames, while
here we focus on actions. PARTNR can be used to interactively
train vision-based pick and place models, such as Transporter
networks [14] and its extension for language commands CLIPort
[7]. PARTNR asks for a human demonstration in case the
model predictions are ambiguous. We consider a prediction
to be ambiguous if it results in multiple options with similar
value estimates. To be trustworthy, the threshold of the gating
function is adaptive and allows it to satisfy a user-defined
sensitivity, balancing between potential failing and asking the
user unnecessarily.

PARTNR consists of two main steps: 1) Detecting ambiguity
in pick and place heatmaps by finding multiple local maxima
using topological persistence and query user demonstrations if
needed. 2) Aggregating data from new human demonstrations in
DAgger style to learn from feedback and resolve the ambiguity.
PARTNR has several advantageous features compared to the
other state-of-the-art approaches: 1) By querying a new demon-
stration based on the level of ambiguity, it avoids gathering
demonstrations for situations that are already learned by the
agent, therefore reducing the number of required demonstrations.
2) By specifying the desired sensitivity level, the user can
set its preferred balance between the frequency of queries
by the robot and the failure rate, therefore increasing the
system’s trustworthiness. 3) By gathering data during execution,
PARTNR can adapt to changing environments as well as include
failure states, i.e., new states visited by making mistakes, in the
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Fig. 1: PARTNR framework on an example task.

dataset so it can learn to recover from them. We demonstrate
these on a simulated table-top robot pick and place task, where
we show an improvement of the performance with respect to
the baseline (CLIPort variant).

The rest of the paper is organized as follows. Section II
presents preliminaries as seen in the works [14], [7] and lays the
formal problem formulation for our work. Section III presents
our method. This is followed by experiments and conclusion
sections.

Additional material is available at: partnr-learn.github.io.

II. PRELIMINARIES AND PROBLEM DEFINITION

We follow [14], [7] and describe the pick and place problem
as finding a mapping from an observation ot to a pick and place
action at at time step t, that is, f(ot)→ at = (Tpick, Tplace) ∈
A, whereA is the set of possible actions and Tpick and Tplace are
the end-effector pick and place poses, respectively. We consider
a table-top pick and place problem with Tpick, Tplace ∈ R2.
Motion primitives can be used to obtain a sequence of lower-
level actions from Tpick and Tplace. Furthermore, we consider
vision-based manipulation with Ti ∼ (u, v), i ∈ {pick, place},
where (u, v) is a pixel location of a (projected) top view
image. If we model the action-value functions Qpick and
Qplace, the optimal pick and place locations according to
the model are Tpick = argmax(u,v)Qpick((u, v)|ot) and
Tplace = argmax(u,v)Qplace((u, v)|ot, Tpick). Note that Tplace
is conditioned on Tpick. Normalized heatmaps correlated with
pick and place success can be obtained using the softmax
function, i.e., Vpick ∈ RH×W = softmax(Qpick((u, v)|ot))
, where H and W are the height and width of the top view
image, respectively. The action-value functions can be estimated
through imitation learning. We build on the standard imitation
learning setting where we have a dataset D = {ζ1, ζ2, ..., ζn},
where n is the number of expert demonstration trajectories
consisting of one or more tuples of observations and actions,
i.e., ζi = {(o0,a0), (o1,a1), ...}.

In this work, we extend previous problem formulation and
consider situations when taking the most probable action by
argmax is not sufficient, e.g. when there is no single distinctive
maximum. We tackle the interactive learning problem where
the robot needs to hand over the control back to the human
and learn from new human demonstrations.

III. THE METHOD

PARTNR is an interactive imitation learning algorithm that
asks the human to take over control in case it considers the
situation to be ambiguous. We consider the situation to be
ambiguous when the learned policy does not provide a single
dominant solution, i.e., there are multiple local maxima with
close values in the action space. User demonstrations are
aggregated to the dataset D and used for subsequent training, as
shown in Algorithm 1. Figure 1 shows the PARTNR framework
in an example where a human asks the robot to pick the red
block and place it in the top right corner. As we can see on the
heatmaps for pick and place, there are multiple local maxima
for this command. In the pick heatmap Qpick there are at
least three local maxima, each related to one of the blocks.
The maximum related to the red block is the highest (0.45).
However, the orange block is also relatively close (0.39). In
this case, the situation might be ambiguous (depending on the
sensitivity level) and the robot might query the teacher for a
demonstration.

A. Topological Analysis Ambiguity measure

The robot observes, at each execution step, a human-provided
natural language command and the state of the environment (e.g.,
a top-view image of the table). Based on the observation, the
policy provides the heatmap, representing the value of the action
(e.g., Qpick representing pick location). The heatmap (Qpick

and subsequently Qplace) is then analyzed to detect multiple
local maxima (in TopAnalysis). In this work, we rely on
computational topology methods for finding local maxima [15].
Specifically we use a persistent homology method [16]. Then, in
AmbiguityMeasure, the obtained corresponding values of
the local maxima T, are normalized using the softmax function
and the maximum value p̂act is then used to decide if the
situation is ambiguous. If p̂act is smaller than the threshold pthract,
the situation is ambiguous. In case the situation is ambiguous,
the robot is not executing the policy but queries the human
teacher.

Figure Figure 2 shows a visual example of how the ambiguity
measure is obtained. The input image together with the correct
action (green arrow) is shown in Figure Figure 2 (a). Here,
the language command is: ‘Pick the red block and place it on
the top right corner”. With TopAnalysis, we obtain local



Algorithm 1: PARTNR - detailed algorithm
input :Dinit // initial demonstrations
output :Qpick,Qplace // pick and place value

functions

1 D ← Dinit // initial Dataset
2 Qpick,Qplace ← Train(Dinit)
3 TP,TN,FP,FN← ∅
4 pthrpick, p

thr
place ← init()

5 for t← 0 to tmax do // while experiment runs
6 ot ← Observe()

7 foreach act ∈ {pick, place} do
8 isUpdated← false
9 T = {(u1, v1), . . . , (uk, vk)} ←

TopAnalysis(Qact((u, v)|ot))
10 amax ← argmax(u,v)∈TQact(u, v)
11 p̂act ← AmbiguityMeasure(T)

12 if p̂act ≤ pthract then // if ambiguous
13 at ← QueryTeacher(T)
14 D ← D ∪ (ot,at) // adding user input to

the Dataset
15 isUpdated← true
16 if at == amax then
17 FP← FP ∪ t // adding False

Positive flag
18 else
19 TP← TP ∪ t // adding True

Positive flag

20 Act(at)
21 else // if not ambiguous
22 Act(amax)
23 if acorr ← ObserveCorrection() ̸= ∅ then

// if teacher corrects
24 D ← D ∪ (ot,acorr)
25 isUpdated← true
26 FN← FN ∪ t // adding False

Negative flag

27 else
28 TN← TN ∪ t // adding True Negative

flag

29 pthract ← UpdateThreshold(pthract,TP,TN,FP,FN)

30 if isUpdated then
31 Qact ← Train(D) // update the model

with new data

maxima T, which are shown in Figure Figure 2 (b) and Figure
Figure 2 (c) for the pick and place poses, respectively. The
corresponding values are shown in Figure Figure 2 (d). After
normalization using the softmax function, we obtain Figure
Figure 2 (e). The local maxima with a normalized value greater
than 0.01 are shown in Figure Figure 2 (f) and Figure Figure 2
(g) for the pick and place poses, respectively. The maximum
of the normalized values is used as ambiguity measure.

B. Adaptive Threshold

The threshold pthract is updated continuously, by the function
UpdateThreshold, to satisfy a user-defined sensitivity value
(more details in Section III-B). Whenever there is a teacher
input, the data is aggregated and the policy is updated using
the function Train (like in [10]). A detailed version of the

(a) (b) (c)

(d)

(e)

(f) (g)

Fig. 2: Visual example of obtaining the ambiguity measure. The input
image together with the correct action (green arrow) is shown in (a).
Here, the language command is: ‘Pick the red block and place it on
the top right corner”. With TopAnalysis, we obtain local maxima
T, which are shown in (b) and Figure Figure 2 (c) for the pick and
place poses, respectively. The corresponding values are shown in (d).
After normalization using the softmax function, we obtain (e). The
local maxima with a normalized value greater than 0.01 are shown in
(f) and (g) for the pick and place poses, respectively. The maximum
of the normalized values is used as ambiguity measure.



Algorithm 2: UpdateThreshold
input : Initial threshold pthr0 , Desired sensitivity sdes,

Window length wn, Adaptation rate a.
output : threshold pthr

1 begin
2 kTP, kTN, kFP, kFN ←

MovHorCnt(wn,TP,TN,FP,FN)
// Counting occurrence in the
window wn

3 ŝ← kTP

kTP+kFN

4 pthr ← pthr0 − a · (sdes − ŝ)

adaptive threshold algorithm is shown in Algorithm 2. Here,
the number of true positives, true negatives, false positives, and
false negatives are counted over a window (kTP, kTN, kFP, kFN,
respectively). Subsequently, the sensitivity can be estimated
(ŝ) [17]. The definition of positives and negatives is shown in
Table I.

Finally, the threshold pthr is updated proportionally to the
error between the desired and estimated sensitivity. In our
experiments, we used the following values: pthr0 = 0.5, sdes =
0.9, wn = 50 and a = 0.005.

IV. EXPERIMENTS AND RESULTS

We evaluated the performance of the proposed method in
a simulated table-top pick and place task, which is shown in
Figure 3. This task is very similar to tasks from [7], [14], [18].
The goal of this task is to execute language commands in the
form “Pick the [pick color] box and place it in the [place
color] bowl.”, where the pick and place colors are sampled at
the beginning of an episode, based on the colors of the objects
present in the scene. The task is simulated using the PyBullet
simulator [19] and the implementation is adapted from [18].
At the beginning of each episode, three boxes and three bowls
are placed at random locations on the table. Similar to [7],
the colors of the objects are either sampled from the color set
of Call ∪ Cseen or the color set Call ∪ Cunseen, where Call = {red,
blue, green}, Cseen = {yellow, brown, gray, cyan}, and Cunseen =
{orange, purple, pink, white}. The set of seen colors is used
for offline training, while both sets are used for evaluation and
interactive learning, to simulate a domain shift.

As a baseline, the CLIPort variant used in [18], [6] is
employed and trained on a dataset consisting of demonstrations
from a scripted expert. We also trained CLIPort models using the
PARTNR algorithm with the same architecture as the baseline
interactively, as described in Algorithm 1. The interactive

TABLE I: Definition of positives and negatives. In the ideal case, the
teacher is only queried in the case that the robot’s action would result
in a failure (true positive).

Human input was necessary

A
m

bi
gu

ou
s True False

True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

models are initially trained offline and updated interactively
while executing the task. To have a fair comparison between
the baseline and the interactive models, both have the same
number of total demonstrations and a total number of model
updates. Since real-life demonstrations are never perfect, we
also evaluated the method with noisy demonstrations.

We follow [7] and evaluate each model in 100 episodes
consisting of three pick-and-place commands. The percentage
of successfully performed pick and place commands is used
as evaluation metric. The results in Table II show that the
PARTNR algorithm improves the baseline performance, both in
the in-distribution and out-of-distribution scenarios (seen and
unseen case). The improvement in the unseen case indicates that
by collecting on-policy data, the methods improves robustness
against domain shifts. Because the PARTNR algorithm collects
data from the state distribution induced by the novice policy, it
can learn to recover after mistakes, while this is not the case
when learning offline from expert demonstrations. That is to
say, the expert does not make any mistakes and therefore failure
states are not visited by the expert policy. An example of such
a recovery learned interactively is shown in Figure 4.

Interestingly, both the baseline and PARTNR performance
improved substantially when adding noise to the pick and place
demonstrations from the scripted expert. To be noted, the final
performance is lower than obtained with the original CLIPort
model in [7]. Most likely, this is due to the usage of a simplified
variant, a lower number of data augmentations and a lower
number of camera perspectives. However, this is not relevant
as the main focus here is to make a comparison against a non-
interactive baseline, and not to obtain optimal performance.

V. CONCLUSIONS AND OUTLOOK

This work introduced PARTNR, an interactive learning
algorithm for resolving ambiguities in pick-and-place tasks.
The PARTNR algorithm improves the baseline performance,
both in the in-distribution and out-of-distribution scenarios.
Furthermore, sampling efficiency is improved (even up to 20%
more data-efficient), since demonstrations are only collected

Fig. 3: The put-blocks-in-bowls task. Given a language command and
observation of the scene, the robot needs to pick the block of a given
color and place it in the bowl of a given color.



put-blocks-in-bowls
seen-colors

put-blocks-in-bowls
unseen-colors

algorithm data split 500 1000 1000 noisy 1500 500 1000 1500

Baseline 100% off 28.3 51.7 82.7 62.7 19.0 22.0 16.7
PARTNR 50% off + 50% int 30.3 57.3 91.0 80.3 30.7 53.0 78.3
PARTNR (80% data) 50% off + 30% int 28.0 39.3 77.7 68.0 20.3 28.3 57.3

TABLE II: The performance of the PARTNR algorithm is evaluated against the performance of the non-interactive baseline (CLIPort variant).
Here the success rate (%) is shown for a number of demonstrations, i.e., 500, 1000 and 1500. The data split indicates the percentage of
demonstrations that were obtained offline (off) and interactively (int), so in the last row, 20% fewer demonstrations were collected. Since real
demonstrations are often noisy, we also evaluated both methods with noise (∼ N (0, 32) pixels) added to the pick and place locations (1000
noisy).

(a) (b)

(c) (d)

Fig. 4: Example of learning how to recover thanks to on-policy data
collection. The figures (a) and (b) show demonstrations for failure
states, i.e., in (a) the block to be picked is already in another bowl, and
in (b) there is already a block in the blue bowl. Such demonstrations
of failure states are collected only in the interactive case. Figures (c)
and (d) show that the novice can learn to recover from such failure
states.

when needed, based on the user-specified sensitivity. In the
future, we plan to evaluate PARTNR with the original CLIPort
baseline as well and to further address the epistemic uncertainty
of the model, e.g., through an ensemble approach. Also, we wish
to extend the method with sequence prediction and feedback
control. Finally, we plan to monitor the human cognitive load
in a real-world participant study.
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