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Abstract

We present an approach for learning sequential robot skills through kinesthetic teaching. In our work, finding the
transitions between consecutive movement primitives is treated as multiclass classification problem. We show how the goal
parameters of linear attractor movement primitives can be learned from manually segmented and labelled demonstrations
and how the observed movement primitive order can help to improve the movement reproduction. The improvement is
achieved by restricting the classification result to the currently activated movement primitive and its possible successors
in a graph representation of the sequence, which is also learned from the demonstrations. The approach is validated with
three experiments using a Barrett wam robot.
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1. Introduction

Adapting skills to new situations is arguably one of
the key elements for robots to become more autonomous.
Learning from demonstration (lfd) or imitation learning
therefore has received a lot of attention in robotics research
in the past years. The goal of lfd is to learn skills based
on demonstrations of a teacher [1]. While most work in this
domain concentrates on learning single movement skills,
sequencing such learned skills in order to perform more
sophisticated tasks is still an open research topic. There
are two cases where such sequential skills are particularly
useful. First, there are tasks which are not representable
in a non-sequential way at all. As an example, consider a
robot standing in front of a door. Without any additional
knowledge, the system does not know whether the robot
has to open the door or if the robot just closed it. The
reason is that the same state is perceived for both options.
This problem is often referred to as perceptual aliasing [29].
Dissolving perceptual aliasing requires either the previous
movement history to be encoded in the perceived state or a
policy which activates movements based on the history of
movements. Such a policy is what we call a sequential skill.
Second, even though a task may be representable using a
single movement, it may be beneficial to decompose it into
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Figure 1: The system is supposed to learn how to unscrew
a light bulb from kinesthetic demonstrations. We evaluate
our approach on this example using a real seven degrees of
freedom (dof) Barrett wam robot with a four dof hand.

smaller (sub-)tasks first. Such a decomposition bounds the
complexity of each (sub-)task and the resulting movements
are often more intuitive and easier to learn.

We aim at learning sequential skills where the currently
activated movement cannot be solely determined from the
perceived state, but may also depend on the history of
movements. The goal is to learn when to activate each
movement, based on kinesthetic demonstrations. Kines-
thetic teaching is a widely used teaching method in robotics.
Here, a teacher guides a robot through movements by phys-
ically moving the robot’s arm, similar to parents teaching
tasks to their children. (see Figure 1).
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1.1. Related Work

Single elementary movements are often referred to as
movement primitives (mps) in literature [10, 26]. The
traditional way of sequencing mps was inspired by the sub-
sumption architecture [3], where the behavior of a system is
represented by a hierarchy of sub-behaviors. A sequential
skill is usually composed by a two-level hierarchy, whereby
the lower-level mps are activated by an upper-level sequenc-
ing layer. The sequencing layer is usually modeled as graph
structure, finite state machine (fsm) or Petri net and the
activation of a mp is interpreted as discrete event in a
continuous system [25, 24, 6]. An alternative view is treat-
ing the overall system as continuous entity. For example,
Luksch et al. [14] model a sequence with a recurrent neural
network. In that architecture, mps can be concurrently
active and inhibit each other. Therefore the sequence is
defined implicitly. Although this structure leads to very
smooth movements, the model is hard to learn and has to
be defined mostly by hand.

Most concepts for sequencing mps concentrate either
on segmenting demonstrations into a set of mps and/or
on learning the individual mp parameters [21, 7, 27, 18].
Reproducing a sequence of learned mps then serves as proof
of concept for the segmentation. The actual sequence is not
so important here, therefore the mps are chosen randomly
or are the same as in the demonstrations [13, 15]. The
transition behavior between mps is also either determin-
istic (e.g., the succeeding movement depends only on the
previous movement) or not learned at all [11]. For trigger-
ing transitions, often subgoals or sequential constraints of a
task are used [9, 19]. Sequential constraints (e.g., subtask A
has to be executed before subtask B) can also be used to
extract symbolic descriptions of tasks [22, 28, 12]. Such
a description implicitly determines the mp sequence and
is often intuitive. Indeed, symbolic approaches can per-
form sufficiently well for predetermined settings. However,
they lack generality as they rely on predefined assumptions
about the tasks. If these assumptions do not fully apply,
they are likely to bias the system towards suboptimal deci-
sions. Therefore probabilistic methods have become more
popular, as they allow for a better generalization.

In [23], a nearest neighbor classifier is used to decide
which mp to activate when the current movement has fin-
ished. Butterfield et al. [4] use a hierarchical Dirichlet
process hidden Markov model as classification method for
determining the next mp based on the sensor information
and current mp. Niekum et al. [20] segment a demonstra-
tion with a beta process auto-regressive hidden Markov
model in a set of mps and build a fsm on the sequential
level. The transition behavior is learned with k-nearest
neighbor classification. The focus of our work lies on incor-
porating several demonstrations with varying mp sequences
into one model of a task and learning the transition be-
havior between succeeding mps. Basis for learning are the
manually segmented and labeled sensor data traces from a
set of kinesthetic demonstrations.

1.2. Proposed Approach

In this paper, a mp is a dynamical system (ds) with
a linear attractor behavior. A detailed description of the
underlying mp framework can be found in [14]. Please note,
however, that our methods are kept general and that they
should be applicable to arbitrary mp frameworks and fea-
ture sets. Each mp has a goal sg in task space coordinates
that should be reached if it is activated. A goal can be
a desired position of a robot body, joint angle, force or a
combination thereof and can be defined relative between
bodies using reference frames. mps may be terminated
before their goal is reached, for example, if a sensor read-
ing indicates to the system that an obstacle is close to
the robot. More generally, the transition behavior can be
triggered based on the state of a feature set denoted as xi,
with i indicating the time step. The features are not global

but assigned to mps, leading to one feature vector x
(k)
i

per mp pk. We assume a predefined set of K mps denoted
as P = {p1, p2, ..., pK}. All parameters of each mp in the
library (such as the reference frames) are known, but the
attractor goals are not.

Similar to most other approaches, the transition behav-
ior between mps is considered to be discrete in this paper.
Therefore, only one mp is active at a time. At every time
step, the system has to decide which mp to activate. A
straightforward way of applying machine learning methods
to this problem would be training a single classifier with
the labeled demonstration data. The skill could be subse-
quently reproduced by choosing the classification result for
the current feature values as next activated mp. Neverthe-
less, complex skills involve many different mps and due to
perceptual aliasing between the different movements the
classification may yield unsatisfying results. As the num-
ber of mps grows, resolving the perceptual aliasing with
a better set of hand-crafted features for the classification
becomes intractable.

Our proposed approach consists of three stages as de-
picted in Figure 2. In the first stage, the goal parameters
of the individual mps are learned from the demonstration
data (Section 2). In the second stage, a representation of
the demonstrated sequences is learned by connecting the
observed mps in a graph (Section 3). Each node in the
graph corresponds to a mp and each transition leads to
a potentially succeeding mp. In the final stage, the mp

transition behavior is learned (Section 4). One classifier is
linked to each node in the graph. The task of the classifier
is to decide when to transition to a new state in the graph
during the reproduction of a skill, resulting in an activation
of a different mp. These decisions are made based on the
current state of the robot and its environment. The state
is based on a set of features which are computed from
raw sensor values. The graph structure therefore helps
to improve the classification, as the overall classification
problem is split into many smaller problems which may be
easier to solve. Here, the reduced difficulty is due to the re-
striction of the possible classification results, which leads to
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Figure 2: Overview of the learning approach. The approach starts with a predefined movement primitive (mp) library. All
parameters of each mp in the library (such as the reference frames) are known, but the attractor goals such as a position x/y or
an angle α are not. From the kinesthetic demonstrations, first these goals ❶ are learned. Next, a graph representation of the
demonstrated sequences ❷ is learned. The graph is called sequence graph and determines possible successors of a mp during
reproduction. Finally, the transition behavior is learned by training one local classifier for each node in the graph ❸.

less perceptual aliasing. An experimental validation of the
approach is presented in Section 5, followed by a conclusion
and a short outlook on future work in Section 6. Graph and
transition behavior learning have been previously presented
at two conferences [16, 17]. In this paper, the approach is
extended by learning the mp goal parameters and evaluated
in substantially more experiments.

2. Learning Movement Primitive Parameters

Learning the parameters of mps directly from the demon-
strations is crucial in order to avoid tedious parameter
tuning. In our case, the parameters are the attractor
goals of each mp. Even when segmenting and labeling
demonstrations manually, extracting the goals is often not
straightforward. One reason is that mps do not always
reach their goal. For example, in a reaching movement that
has to be stopped due to a collision with an obstacle, the
robot is usually quite far away from the mp’s goal. If the
attractor goals are not known beforehand, it is often not
clear from the demonstrations whether a mp was stopped
as the goal was reached or for any other reason. Hence, a
simple solution such as taking the mean of all end points
is often insufficient for learning the goals. In general, there
are two possible ways of handling incomplete movements.

1. Ignore them for goal learning.

2. Predict the goal regardless of completeness.

The first approach requires a method for detecting in-
complete movements, e.g., by clustering the end points
of each mp activation and detecting outliers. Clustering
usually requires a lot of data. Our goal is to learn from
as few demonstrations as possible, as we do not want to
overload the demonstrator by requiring tens of demon-
strations. Therefore, we take the more sample efficient
second approach and predict the goal without detecting
and discarding incomplete movements. We argue that even
if a mp is stopped prematurely, the movement up to that
point still roughly points towards the mp’s attractor goal.
Our approach utilizes this information as follows. First,

all trajectories are approximated by linear functions of
time. For each trajectory, the goal is expected to lie on its
future path, which is predicted using the linear functions.
The goal is subsequently found by arbitrating between all
expected goals and finding the best compromise between
them. In the following sections, we will first show how a
trajectory is approximated and then how the goal is learned.
An overview of the goal learning is shown in Figure 3.

2.1. Trajectory Approximation

Before learning the attractor goals, we assume that the
demonstrations have been segmented and labelled, resulting
in a set of k different mps. As the goals are learned for each
mp separately, the mp index k will be omitted in the follow-
ing. Each trajectory consists of a set of pairs {ti, si}, where
ti is the time and si ∈ R

q×1 is a vector whose elements
represent the state of the mp in task space coordinates.
Note that task state si and feature state xi are different.
The task state represents the state controlled by the system
and is used for learning the mp goals. The feature state
instead is decoupled from the controller and can represent
anything, such as the state of the environment. It will
be used for learning the transition behavior in Section 4.
Within our system, each dimension of the goal is learned
independently. We have observed that one-dimensional
goal learning is reflecting the behavior of a human teacher
more naturally. As an example, consider a teacher mov-
ing a gravity compensated robot end-effector to a desired
3D-position. The teacher will start approaching the goal
position. Due to an imperfect motion, not all dimensions of
the goal position will be reached at the same time. Instead,
the teacher may recognize that the desired x-position is
already reached, but y- and z-position are not. Therefore,
while trying to reach the desired overall position, the end-
effector is moved along the yz-plane while the x-position
is kept constant. The resulting trajectory will differ from
the desired linear attractor behavior of the robot. For
a real demonstration, the teacher also has to control the
orientation of the end-effector and the hand of the robot.
As it is difficult to reach the desired goal state all at once,
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Figure 3: Goal learning overview. The trajectories (a) are velocity normalized (b) and approximated by linear functions (solid red
lines, c). For each trajectory, the goal is expected to lie on its future path (red dashed lines), which is predicted using the linear
functions. The goal (thick black line) is then found by minimizing the cost function (d), which arbitrates between all expected
goals. Note that the cost function is zero for the entire gray area. Therefore the center of the interval is chosen as goal of the mp.
The thin black line shows the mean of the trajectory end points as comparison.

humans seem to concentrate on a few dimensions first.
Therefore, demonstrations usually do not really match the
attractor behavior of a real robot motion. To compensate
for this mismatch, we learn the goal per dimension. In the
following, we therefore use a scalar notation for the task
space.

We focus on tasks where the velocity of a movement is
irrelevant. Therefore, the time does not correspond to the
real time axis of the demonstrations, but is computed by
normalizing the velocity

ti = ti−1 + (si − si−1)
2
, t0 = 0, (1)

as illustrated in the two left plots in Figure 3. As model for
the approximation of a trajectory, a simple linear function
is used

f(ti) = ati + b = s̃i. (2)

Here, s̃i is the predicted state of the mp at time ti and
a and b are the parameters of the model. Although a
linear function is a simple model, it is notable here that
it matches the demonstrations of single attractor move-
ments quite well, as they can be seen as point-to-point
movements in task space. We focus on tasks that have
such linear characteristics, e.g., pick-and-place tasks. The
assumption of a linear model usually does not apply for the
transition between two mps. During demonstration and
reproduction of a sequence, a transition can occur with a
non-zero velocity. As a consequence, the start of a mp may
be influenced by its predecessor. The resulting trajectory
will contain arcs or edges and is an example for a trajec-
tory that cannot be well represented using a straight line.
Nevertheless, note that there is no need to approximate
the whole trajectory well in our approach. Instead, the
line only has to pass through the real goal at some future
time point. The method has to find the parameters of
Equation (2) to ensure this property.

Therefore, we chose to use weighted least squares re-
gression (wlsr, [5]) for learning the parameters a and b.

Compared to least squares regression, wlsr additionally
allows to weight the importance of each data point. By
weighting the data points at the end of a trajectory stronger
than at the beginning, it is possible to minimize the in-
fluence of the preceding movement, while still matching
the overall trajectory well. The parameters are found by
minimizing the weighted sum of distances between the sam-
pled states si and predicted states s̃i from Equation (2),
resulting in the cost function

J(a, b) =
N
∑

i=1

g(i) (si − s̃i)
2
. (3)

Here, N is the number of samples and g(i) is a weighting
function. We suggest to use g(i) = i2/N , as the quadratic
weights minimize the influence of the preceding mp at the
start of a trajectory and focus on the data points closer to
the goal. Cubic or even larger weights focus on few data
points at the end of a trajectory and therefore become
sensitive to noise. Minimizing the error function (3) is
straightforward (see [5]).

2.2. Goal Learning

We assume that a mp has been active M times, result-
ing in M trajectories approximated by linear functions fj
with j = {1, . . . ,M}. Figure 3(c-d) shows an overview of
our goal learning approach. As already mentioned, the
basic idea is that for each trajectory j, the goal is expected
to lie on its future path. The future path is predicted using
the linear function fj , which allows us to formulate the
expected goal in terms of the slope parameter aj and the
predicted state uj at the final time of the trajectory

uj = fj(t
(j)
N ). (4)

If the slope is positive, the expected goal is equal or greater
than uj . If it is negative, the expected goal is equal or
less than uj . For finding the best compromise between all
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Figure 4: Three goal learning cases and their resulting distance
and cost functions. In general, trajectories may converge (top),
diverge (center) or point in the same direction (bottom). The
black dashed lines show the goal of the mp.

trajectories, we construct a cost function which penalizes
deviations from each expected goal. As a first step, we
define the distance between a state s and the expected goal
of a trajectory j as

dj(s) =











0, if aj > 0 and s ≥ uj ,

0, if aj < 0 and s ≤ uj ,

|s− uj | , otherwise.

(5)

Then, the attractor goal of one particular dimension of a
mp can be defined as the point sg where the squared sum
of distances becomes minimal

J(s) =
M
∑

j=1

d2j (s), (6)

sg = min
s

J(s). (7)

Figure 4 shows some trajectories and their resulting dis-
tance and cost functions as an example. For finding the
solution sg, we first calculate the derivative of the cost
function (6). Due to Equation (5), the cost function is
non-differentiable at each threshold uj . Therefore, the
derivative has to be computed for each interval [uj , uj+1]
separately and is given by

d

ds
J(s) = 2

∑

j∈D

(s− uj). (8)

Here, D is the set of functions for which Equation (5) is
non-zero. For the intervals, we assumed that the thresholds
have been sorted in ascending or descending order. Setting
the derivative equal to zero and rearranging for s results in

sg =
1

nD

∑

j∈D

uj , (9)

where nD is the number of elements in D. The solution sg
may lie outside of the interval. In that case, it is clipped
to the closest interval border. If there exists an interval for
which D is empty, the error will become zero and hence
any value in this interval is a possible solution. In that
case, the center of the interval is taken as goal. The final
equation therefore is

sg =



















(uj + uj+1)/2 if nD = 0,

uj if nD 6= 0, sg < uj ,

uj+1 if nD 6= 0, sg > uj+1,

sg otherwise.

(10)

The goal sg is computed for every interval [uj , uj+1] and
subsequently inserted into Equation (6). The goal resulting
in the lowest value of this cost function is then chosen as
final goal of the mp.

Due to the quadratic dependency of Equation (6) on
the expected goals, overshoots may shift the goal away
from the desired value. However, our experience is that if
a teacher recognizes that the goal was not hit accurately,
he/she usually corrects his/her mistake, so that in the end
the real goal is approximately reached. If a mp is stopped
prematurely, overshoots also do not lead to problems. Ad-
ditionally, the trajectory approximation with wlsr leads
to some robustness against overshoots.

3. Learning Graph Representations

In the previous section, the parameters of the individ-
ual mps have been acquired. In this section, we propose
an approach for learning a graph representation of the
demonstrated sequences which we call sequence graph. In
a sequence graph, every node is linked to a mp. During
reproduction, the graph determines which mp may be acti-
vated next. A missing transition in the graph might prevent
an activation of the correct mp, while too many outgoing
transitions might lead to the activation of a wrong mp due
to perceptual aliasing. It is therefore crucial to find a good
structure for a given set of demonstrations.

Figure 5 shows an overview of the graph learning based
on a simple toy example with only three different mps,
that will be used throughout this section. The mps are
indicated by different colors. They are chosen arbitrarily
and have no further meaning, but show the essential char-
acteristics of our approach. First, we perform at least one
kinesthetic demonstration. In general, we assume that M
demonstrations have been collected. For each demonstra-
tion, we get a labeled (background colors in Figure 5a) set
of features (black lines). The features are only used for
learning the transition behavior and will be explained in
Section 4. For learning a sequence graph, only the observed
mp sequence is used, as shown in Figure 5b. The graph
representation will be explained in detail in the following
section, where we also present two different types of se-
quence graphs, both showing different ways of incorporating
the sequences into the representation.
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Figure 5: Overview of the graph learning. First, the labeled data from a set of demonstrations (a) is taken to extract the mp

sequence (b). This sequence can then be used to generate a sequence graph. We investigate two different sequence graph types. A
compact local sequence graph (c) and a more sophisticated global sequence graph (d). The numbers on the transitions correspond
to the transitions points (tps, see upper left figure). A tp is a point in time at which a transition between mps occurs.

A sequence graph is a directed graph in which each
node ni is linked to a mp. This mapping is not injective
which means a mp can be linked to more than one node.
During reproduction, a mp is activated if a linked node
is considered active. Transitions in the graph lead to suc-
ceeding mps that can be activated if the current mp has
finished. A transition tk,l is connecting the node nk with nl.
Each transition is linked with the corresponding transition
points (tp) at which it was observed during the demon-
stration (black vertical lines in Figure 5a). As the same
transition can be observed multiple times, multiple tps are
possible.

Having m nodes in a graph, we use a m×m transition
matrix T with elements tk,l to describe one sequence graph.
As a mp is usually activated for more than one time step,
the transition tk,k exists for all k. We start with one
directed acyclic graph with nodes nj,i for each trial (see
Figure 5b), which contains the observed mp sequence. The
main step is now to combine multiple of these graphs
into one representation of the skill, which can be a hard
problem as the algorithm has to work solely based on the
observations. As an example, consider the task of baking
a cake. Here, it does not matter if milk or eggs are put
in the bowl first. Still, the task may be demonstrated one
time with the sequence milk-eggs and one time with the
sequence eggs-milk. From an algorithmic point of view it
is often not clear if a sequence is arbitrary for a skill or
if the differences can be linked to some traceable sensor
events. Hence, there are different ways of building the
graph structure for a skill. We show two possibilities by
investigating two different kinds of sequence graphs. The
local graph presumes a sequence to be arbitrary and is not
considering it in the representation, while the global graph
is trying to construct a more detailed skill description.

3.1. Local Sequence Graph

The local sequence graph assigns exactly one node to
each activated mp and hence the number of nodes and mps
is equal. The graph is initialized with one node per mp

and without transitions. For each observed pair of mps
a transition is added to the graph. As only pairs and no
history are considered, it is irrelevant at which point in the
sequence a transition occurs. The corresponding graph for
the toy example is shown in Figure 5c.

The graph contains only three nodes, one for each acti-
vated mp. When reproducing the movement, a transition
from the red mp to the blue one is always possible at this
level of the hierarchy and it is up to the classifier to prevent
such incorrect transitions. The major drawback of this
representation is the strong requirement on the feature set,
as it has to be sufficiently meaningful to allow for a correct
classification independent of the history of activated mps.

3.2. Global Sequence Graph

The global sequence graph attempts to overcome this
issue by constructing a more detailed skill description. One
essential characteristic of the global sequence graph is that
there is no one to one mapping between mps and graph
states. Instead, a mp can appear multiple times in one rep-
resentation as depicted in the global sequence graph of the
toy example (Figure 5d). Here, two nodes are linked to the
red mp because the sequence was considered to be in two
different states when they were activated. The repeated
appearance of the green-blue transitions (see Figure 5a) is
represented by only two nodes as in the local graph. The
reason is that consecutive sequences of the same mps are
considered to be a repetition which can be demonstrated
and reproduced an arbitrary number of times. Repeti-
tions are also advantageous when describing tasks with
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Algorithm 1 Graph Folding

Require: T

1: repetition = findRepetition(T );
2: while repetition.found do

3: R = ∅;
4: repetition.l = repetition.end − repetition.start + 1;
5: for i = repetition.start to repetition.end do

6: mergeNodes(T (i+ repetition.l),T (i));
7: R = R ∪ T (i);
8: repetition = findRepetition(T );
9: if !repetition.found then

10: tail = findTail(T , repetition.end + 1);
11: if tail .found then // Found incomplete cycle
12: for i = tail .start to tail .end do

13: mergeNodes(T (i+ r),T (i));
14: R = R ∪ T (i);
15: T = T \R; // Remove merged nodes from graph

repetitive characteristics, such as unscrewing a light bulb.
Here, the unscrewing movement has to be repeated several
times depending on how firm the bulb is in the holder.
As the number of repetitions is not fixed for each single
demonstration, the algorithm has to conclude that different
numbers of repetitions of the same behavior appeared in
the demonstrations and incorporate this information into
the final representation of the task.

Note that even if a skill requires a fixed number of
repetitions, both presented sequence graphs will contain
a cycle in the representation. The system is then only
able to reproduce the movement properly if the classifier
would find the transition leading out of the cycle after
the correct number of repetitions. While an improvement
is not possible here for the local graph, a fixed number
of repetitions can be modeled with the global graph by
skipping the search for cyclic transitions.

3.3. Graph Construction

The local sequence graph is created by adding one node
for each observed mp and one transition for every observed
mp pair. If a mp pair is observed multiple times, only one
transition is added to the graph. For creating a global
sequence graph, three steps have to be performed.

1. Create one acyclic graph T j for each demonstration.

2. Replace repetitions of mps with cyclic transitions.

3. Combine updated graphs to one global representation
T of the skill.

The first step is straightforward as the acyclic graph rep-
resents the mp sequence directly observed in the demon-
strations. We call the second point folding and its pseudo
code is shown in Algorithm 1. The algorithm starts by
calling the method findRepetition, which is searching for
repetitions of length l = ⌊m/2⌋ in a graph T with m
nodes. The method starts by comparing the mps of the
nodes {n0, n1, . . . , nl} with {nl+1, . . . , n2l+1}. If both node

Algorithm 2 Graph Merging

Require: TA, TB

1: UA = getUniquePaths(TA);
2: UB = getUniquePaths(TB);
3: for all uB ∈ UB do // Iterate over paths
4: cmax = 0;
5: for all uA ∈ UA do

6: c = compare(uA,uB); // Nr. matching nodes
7: if c > cmax then

8: cmax = c;
9: nB,max = uB(1, . . . , c); // First c nodes

10: nA,max = uA(1, . . . , c);
11: for all nA ∈ TA, nB ∈ TB do // Iterate over all nodes
12: if nB ∈ nB,max then // Nodes match
13: mergeNodes(nA, nB);
14: else // Node of graph B has to be added to A
15: addNode(TA, nB);

chains match, the node pairs {n0, nl+1} . . . {nl, n2l+1} are
returned. If the chains do not match, the indices are incre-
mented by one and the method starts from the beginning
with n1 as starting point. The shifting is done until the end
of the list is reached. Next, l is decremented by one and
all previous steps are repeated. Thus, longer repetitions
are preferred over shorter ones. The method terminates if
the cycle size is one, which means no more cycles can be
found.

If a repetition is found, the corresponding nodes are
merged to a single node. When merging two nodes nA and
nB, the input and output transitions of node nB become
input and output transitions of nA. If an equal transition
already exists for nA, only the associated tps are added
to the existing transition. Note that a cyclic transition is
introduced when merging the nodes n0 and nl+1, as this
leads to the input transition tl,l+1 being rerouted to tl,0.
After each iteration of the algorithm, the nodes of the latter
chain are not connected to the rest of the graph anymore
and can be removed from the representation. To allow
escaping a cycle not only at the end of a repetition, the
algorithm also searches for an incomplete cycle after a found
repetition. This tail is considered to be part of the cycle
and is also merged into the cyclic structure (Algorithm 1,
lines 11-15). The toy example also contains an incomplete
cycle, as the green-blue repetitions end incompletely with
the green mp.

We call the final step of creating a global sequence
graph merging, as several separate graphs are merged into
one representation. Algorithm 2 merges two graphs and
thus gets called M − 1 times for M demonstrations. The
algorithm steps through the graphs simultaneously, starting
at the initial nodes, merging equal nodes and introducing
branches whenever nodes differ. The algorithm starts by
extracting the unique paths from both graphs. A unique
path is a path which starts with a node that has no input
transition and ends with a node that has either no output
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Figure 6: One classifier is created for each node in the graph. The training is performed by using the data around the transitions
between the connected mps (a). The data is projected into feature space and the classifier learns a separating border between the
mps, as indicated by the background color in (b). As soon as the current feature state crosses such a border during reproduction, a
transition in the graph is triggered, leading to a switch to a different classifier.

transition or only output transitions to nodes that were
already visited. The toy example has two unique paths,
red, green, blue and red, green, red, blue (see Figure 5d).
Next, the algorithm compares the paths of both graphs
with each other from left to right, searching for the longest
equal subpath. Two nodes are considered as equal if the
columns of the corresponding transition matrices are equal,
which means both nodes use the same underlying mp and
have the same input transitions. Finally, the nodes of
the longest equal subpath are merged, whereas all other
nodes of graph TB are added to TA. By searching for
the longest subpath, branches are introduced at the latest
possible point in the combined graph. Once branched, both
branches are separated and do not get merged together at
a later point in the sequence.

4. Learning the Transition Behavior

After creating the graph representation, the next step
is to train the classifiers — one for each node in the graph.
If a node is active during reproduction, its associated
classifier decides when to transition to a possible succes-
sor node. This multiclass classification problem has the
active node and all of its neighbor nodes in the graph
as classes. Due to the graph representation, we do not
have to learn an overall classification function f(x) = p
with p ∈ P and x being the combined feature vector of
all mps x = (x(1); x(2); . . . ; x(K))T, but can restrict the
classes c of each classifier to a subset Pc ⊆ P and the data
vector to the feature vectors of the elements in Pc. Restrict-
ing the number of classes often increases the accuracy of the
system as transitions not observed in the training data are
prevented. A reduction of the feature vector can be seen
as an implicit dimensionality reduction where unimportant
features used by uninvolved mps are no longer considered
for the decision.

Figure 6a depicts the data used for training a classifier
as an example. After the demonstrations, each transition
in the acyclic graph is linked to one tp in the sampled
data. During the merging and folding process of the global

sequence graph or the pair search for the local graph transi-
tions are merged together, resulting in potentially multiple
tps for each transition. For each tp, the data points be-
tween the previous and next tp in the overall data are
taken from the training and labeled with the mp that was
active during that time. As all transitions have the same
predecessor for one classifier, the first part of the data will
always have the same labels, while the second part may
differ depending on the successor node of the transition.

The classifiers learn from the labeled training data how
to separate the mps in feature space (Figure 6b). During
the reproduction of the mp, the current feature state of the
robot is tracked and as soon as it crosses a border, the corre-
sponding successor will be activated, leading to a transition
in the graph and a switch to another classifier. Any classifier
is applicable to our method. We evaluated support vector
machines (svms, [8]), logistic regression (lr, [2]), kernel
logistic regression (klr, [8]), import vector machines (ivms,
a certain type of sparse kernel logistic regression, [30]), and
Gaussian mixture models (gmms, [2]).

5. Evaluations and Experiments

For evaluating our approach, we perform three different
experiments. In Section 5.1, we evaluate the goal learn-
ing on a task where a robot has to move an object in its
workspace. In Section 5.2, we evaluate the overall perfor-
mance of the system, including the two sequence graph
representations and different classifiers. In the experiment,
a robot has to unscrew a light bulb. In Section 5.3, the
system has to learn to grasp different objects. Addition-
ally, an error recovery strategy for unsuccessful grasps is
demonstrated. With the third experiment, we evaluate the
system performance on a more complex feature set. All
experiments are evaluated using a real seven degrees of
freedom (dof) Barrett wam robot with an attached four
dof hand. For the first and third experiment, also some
simulation results are presented.
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Figure 7: In the first experiment, the robot has to move an object
to a certain position. The robot starts in an initial position ( ),
moves to the object ( ) and grasps it ( ). Subsequently, it
moves the object to another position ( ), opens its hand ( )
and moves to the final position ( ).

5.1. Moving an Object

The first experiment evaluates the goal learning algo-
rithm we describe in Section 2. Therefore, we chose a
rather simple sequence of movements, which does not differ
between single demonstrations. The robot starts in an
initial position, moves to the object and grasps it. Subse-
quently, it moves the object to another position, opens the
hand and returns to the initial position, as illustrated in
Figure 7. As the sequence always is the same and does not
include any repetitions or specific patterns of movements,
the local and global sequence graph algorithms return the
same structure. A mp may control the position and/or
orientation of the end effector as well as the joint angles
of the fingers. If an entity is not controlled by a mp, the
movement results from the null space criteria (e.g., joint
limit avoidance) of the underlying task space controller.
Six different mps have been defined to perform the task, as
shown in Table 1.

Before the experiments on the real robot are presented,
the goal learning is evaluated in simulation first. As kines-
thetic teaching is not possible in simulation, we predefine
the demonstrated sequence with a state machine and the
transition behavior between mps using thresholds. For re-
alism and variation, Gaussian noise is added to the thresh-
olds. Every time a new mp is activated, new thresholds
are computed. The goal of each mp k is set to desired
values s̃

(k)
g and perturbed with additive noise N (0, σ2

I)
for each demonstration. The intention of this experiment is
to evaluate the robustness and accuracy of the goal learning
by disturbing the transition behavior and mp goals. We
perform eight demonstrations with a fixed σ and learn the

goals s
(k)
g of every mp k after each demonstration with the

data of all demonstrations that have been performed up to
this point. For each learning instance, an error is computed

MP Position Orientation Fingers Next MP
 Initial - -  

 A Fixed Open  

 Hold Fixed Closed  

 B Fixed Closed  

 Hold Fixed Open  

 Final - - -

Table 1: mps for the object movement experiments.
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Figure 8: Goal learning error for the simulated toy example.
The error degrades when demonstrating a task multiple times.
The background color shows the hull of one standard deviation.

according to

e =
1

N

N
∑

k=1

∥

∥

∥
s̃
(k)
g − s

(k)
g

∥

∥

∥

1
, (11)

which is the mean of the ℓ1-norm of the difference between
predefined and computed goal of all N mps. The experi-
ment is repeated with three different values for σ 20 times,
so that in total 480 demonstrations are performed. We
summarize the results for all learning instances according
to the number of demonstrations they have been trained
with and compute the mean and standard deviations of
the errors. The results are plotted in Figure 8. In general,
the error decreases slightly for more demonstrations, but
is always consistent with the amount of noise added to the
system.

For the experiments with the real robot, we perform
three kinesthetic demonstrations. Transitions between mps
are indicated by pressing a key every time we consider a
movement as complete. Opening and closing of the hand is
also activated by pressing a key. The labeling is performed
based on the indicated transitions. Next, the transition
behavior is learned with svms as classifier and the task is
reproduced on the real robot.

One feature x
(k)
1 is assigned to each mp k according to

the equation

∆ = s
(k)
g − s

(k), (12)

x
(k)
1 = 1− exp(−0.5(∆TΣ−1

k ∆)). (13)

Here, s(k) ∈ R
q×1 is the current state of the robot in task

space coordinates and Σk is a q × q diagonal matrix with
positive parameters. Note that q can be different for each
mp. Equation (13) depends on the absolute difference
between the state of the robot and the mp’s goal position.
Hence, the feature can be seen as progress indicator and is
called goal distance [14]. It is intrinsically in the range [0, 1]
and makes further data scaling superfluous. In addition, the
variation of the feature around the mp goal can be shaped
with the parameters of Σk. To get expressive features, we
learn the parameters by minimizing the variance of the
feature values while constraining the min and max values
to be as close to zero and one as possible.
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Figure 9: Comparison of trajectories from kinesthetic demonstrations (blue) and reproduction (red). The dashed lines show the
learned mp attractor goals. All trajectories are aligned in time, so that each mp activation takes the same (normalized) time. The
learned goals and the transition behavior are consistent with the demonstrations.

Figure 10: Illustration of a successful unscrewing sequence. The robot starts in an initial position ( ) and first moves towards the
bulb ( ). Then it repeats the unscrewing movement ( ,  ,  ,  ) until the bulb loosens ( ) and subsequently, the bulb is put into
a bin ( ) and the robot returns to its initial position ( ).

Figure 9 shows the resulting trajectories for some se-
lected mp transitions. The learned goals are consistent
with the directions of the movements. If trajectories are
constant or diverge slightly, the goal is averaging over the
trajectories (Figures 9b,c). If all trajectories point in the
same direction as it is the case for Figure 9a, the goal
lies in this direction as well, without conflicting with the
trajectories.

The first example also illustrates the difference between
the goal state of a mp and the state at which a new mp

is activated. A new mp is activated as soon as the clas-
sification border is crossed, which is the case when the
feature state reaches the value of the first transition. Note
that such an early transitioning strategy is only triggered
if it was also demonstrated. Therefore, behaviors such as
opening or closing a gripper prematurely should not occur
unintendedly.

5.2. Unscrewing a Light Bulb

In the second experiment, the system has to learn how
to unscrew a light bulb. The focus of this experiment is on
evaluating the overall performance of the learning system,
including the goal learning, the graph representations and
the transition behavior. For the representation of the skill,
we choose seven different mps, shown in Table 2.

The detailed task flow is illustrated in Figure 10. We
choose to unscrew the light bulb by caging it. Here, the
robot encloses the bulb with its hand and grasps it below
the point with the largest diameter. For positioning the
robot, the end effector coordinates defined relative to the
light bulb holder are set. When opening, closing or rotating

the hand, either the three dofs of the fingers or the angle
of the wrist joint are controlled by the mp. The unscrewing
mp (rotating the closed hand counterclockwise) additionally
applies a force in upward direction to the robot’s hand to
ensure contact with the bulb. Again, the goal distance
feature is assigned to each mp. The goal distance of the
 -mp can be used to detect if the light bulb is still in the
holder. As a force is applied in upward direction during
unscrewing, this force leads to an acceleration of the robot’s
arm as soon as the light bulb gets loose. As a consequence,
the arm moves away from the mp’s goal, resulting in an
increasing value of the goal distance. The system has to
learn that an increase of this goal distance leads to an
immediate stopping of the unscrewing mp and a transition
to the branch in the graph that puts the light bulb into the
bin. As the light bulb is not represented in the feature set
and the unscrewing stopping criterion depends implicitly on
the height of the end-effector, a slipped light bulb can not
be detected. As no slip happened during our experiments,
we did not integrate the state of the light bulb into the
feature set.

MP X Y Z Orientation Fingers Next MP
 Initial Position Initial Hold  ,  
 Light Bulb Hold Spread  

 Light Bulb Hold Closed  

 Bulb Bulb Force Rot. Wrist Closed  ,  
 Light Bulb Hold Spread  ,  
 Light Bulb Rot. Back Spread  

 Garbage Hold Closed  

Table 2: mps for the light bulb experiments.
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Figure 11: Experimental results for the light bulb task. The left plot shows the comparison of the three different graph structures: A
fully connected graph used as baseline and the local and global sequence graph. All graphs were trained with Logistic Regression (lr)
as classifiers. The right plot shows the evaluation of different classifiers: lr, Gaussian Mixture Models (gmms), Support Vector
Machines (svms), and Import Vector Machines (ivms). Here, the global sequence graph has been used. The bars in both plots
indicate the minimum, average and maximum success rate of each mp transition during reproduction of the task.

Initial

(a) Global Sequence Graph

Initial
(b) Local Sequence Graph

Figure 12: Graph representations of the light bulb task. Com-
pared to the global graph, the local graph merges several nodes.
The merging creates paths in the graph which were not demon-
strated. An example is the sequence marked as red which leads
to a misbehavior of the robot if reproduced.

We perform three kinesthetic demonstrations and vary
the position of the light bulb holder for each demonstration.
For all following experiments, the system is trained sepa-
rately with the data of each single demonstration, all pairs
of demonstrations and all demonstrations. Every time the
system is trained, the task is reproduced and the success
rate of each mp transition is evaluated. A transition is
considered successful, if the system activates at the correct
state the correct successor. Incorrect, premature or too
late transitions are considered failures. For unsuccessful
transitions, we restart the movement, trigger the transition
manually and continue with the reproduction from there.

We first evaluate the graph representations by compar-
ing the local and global sequence graph with a baseline
graph, which has one node for each mp and is fully con-
nected. Hence, the system is allowed to transition to any
mp at every point in time. All graph types are trained
with lr as classifiers. The reproduction results are shown
in Figure 11a. Both presented graph representations are
clearly better suited than the baseline graph. Due to the
reduced number of outgoing transitions for each node, the
effect of perceptual aliasing gets reduced, which in turn
improves the performance of the classifiers. This effect is
also the reason why the global sequence graph slightly out-

performs the local sequence graph. Both graphs are shown
in Figure 12. The local sequence graph contains paths
which have not been demonstrated and lead to misbehavior
if reproduced. An example is the red path in the figure.
Here, the robot returns to its initial position with the bulb
in its hand and immediately goes back to the bulb holder
while opening its hand instead of going to the bin.

In a second set of experiments, we evaluate different
classifiers. In addition to lr, we evaluate gmms, svms,
and ivms (see Section 4). All classifiers are trained with
the global sequence graph, as this was the overall winner
of the first experiments. The reproduction results for the
different classifiers are shown in Figure 11b. The results
indicate only a slightly better performance of the kernel
methods compared to lr and gmms. When being trained
with all demonstrations, the average success rate of svms
and ivms is 97.6%, while lr reaches only 92.9%. The main
reason for failing is the unscrewing movement, where the
system sometimes fails to generalize from the demonstra-
tions. When the light bulb gets loose at the beginning
of the unscrewing movement during demonstration, the
system is expected to be in a similar state when the light
bulb gets loose during reproduction. If both states are
different, the system sometimes fails to trigger the transi-
tion to the successor mp properly. This effect is reduced
if more demonstrations are performed, as different wrist
orientations are observed for each transition and therefore
this feature becomes irrelevant for the decision. In gen-
eral, a feature selection method may be helpful for further
improving the performance.

5.3. Grasping Objects with Error Recovery

In a third experiment, the system has to learn to grasp
and lift three cylinders with different lengths using differ-
ent grasps. The intention is to evaluate a more complex
feature set, which also represents the state of the environ-
ment, positions and joint angles instead of the mp goal
distance features. Table 3 summarizes all features for this
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Figure 13: Task flow of the grasping task. The robot starts in
an initial position (top). Depending on the size of the cylinder
and its orientation, the system approaches the cylinder with
different orientations and finger configurations. Subsequently,
the cylinder is grasped and lifted. If the contact with the
cylinder is lost during lifting, the system has to re-start the
task.

task. The position of the end-effector is relative to the
cylinder. Inclination and rotation are angles that represent
the orientation of the cylinder. Both features are illustrated
in Figure 14. Orientation and position of the cylinder are
measured using a six dof magnetic field tracking sensor sys-
tem with precisions of approximately 1 cm and 0.15◦. The
strain gauges measure the tension in each finger. Together
with the finger joint angles, they are used for detecting
successful grasps or a slipped cylinder.

The task is demonstrated as follows (see Figure 13). The
end-effector starts in an initial position and is first moved
to a pre-grasp position close to the cylinder. Subsequently,
the cylinder is grasped and lifted. Depending on the length
of the cylinder and its orientation, different grasps and
pre-grasps are used to solve the task. If the cylinder is
standing, it is grasped from the top. If it standing upside
down, it is grasped at its bottom. We demonstrate the
task with three different cylinder lengths, 8, 16, and 24 cm.
If the cylinder is lying and has a length of 8 or 24 cm, it
is grasped using the power grasp. If the 16 cm cylinder is
lying, it is grasped using the pinch grasp. Pinch and power
grasp can be performed with two different wrist angles
as shown in Figure 14. During the final lifting step, the

Feature Dimension
Cylinder Length 1

Cylinder Inclination 1
Cylinder Rotation 1

End-Effector Position 3
Strain Gauges 3

Finger Joint Angles 4

Table 3: Feature set for grasping task.

α

Top View
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y

(a) Rotation

β

β

Side View
x

z

(b) Inclination

Figure 14: The rotation feature (a) is the angle between the
shown axes of the lying cylinder (red) and the hand (green).
For avoiding unnecessary rotations of the end-effector, we define
two pre-grasp mps that approach the cylinder with different
orientations (top and bottom). Depending on the angle α, the
mp that is closer to its target orientation should be activated.
The feature is shown for the pinch grasp, but is used for the
power grasp in the same manner. The inclination feature (b)
is the angle between the negative gravity vector (black) and
the shown cylinder axis (blue). It indicates if the cylinder is
standing (β = 0), lying or standing upside down (β = π).

cylinder may slip. In that case, the lifting is immediately
stopped. The end-effector is moved to the initial position
and the task is demonstrated from the beginning. Note that
even though this error recovery strategy is demonstrated to
the robot, the system has no explicit notation of an error
when reproducing the task. Instead, a slipped cylinder is
supposed to lead to a mp transition which is treated just
as any other mp transition. The immediate triggering of
the error recovery is also a typical example for a mp that
is stopped before reaching its goal state when reproducing
the task.

Similar to the previous experiments, we train the system
incrementally after each demonstration. Each training is
followed by an evaluation of the reproduction. A successful
reproduction of the tasks requires grasping and lifting the
cylinder, as well as successfully detecting a slipped cylinder.
Figure 15 shows the success rate of the reproduction for
all 17 demonstrations. We evaluated the system with the
local sequence graph and lr in simulation and svms on
the real robot. The results indicate that the system is able
to learn the task completely, even though more demon-
strations have to be performed compared to the light bulb
task. The increased number of required demonstrations
is not surprising, as the resulting graph has six outgoing
transitions for the initial node. The transitions for the lying
cylinder depend non-linearly on the cylinder length. The
logistic regression models fail to cover this non-linearity.
As a result, usually the power grasp is performed when the
cylinder is lying. Even though this might also lead to a suc-
cessful grasp, it is not the behavior that was demonstrated
for the medium-length cylinder and is therefore considered
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Figure 15: Reproduction results for the grasping task. While
an accuracy of 100% can be achieved using svms, the logistic
regression (lr) models fail to cover the non-linear dependency
on the length of the cylinder.

a failure. The experiment shows that the system works
well when using positions or joint angles instead of the mp

goal distances as features. It also shows that it is easy
to integrate arbitrary other features into our framework,
which can for example describe the state of the environ-
ment. The only requirement of our system is, that the
features are meaningful enough, so that successive mps can
be separated well in feature space.

6. Conclusion and Future Work

In this paper, we proposed a method for learning to se-
quence single movements from kinesthetic demonstrations
in order to reproduce a complex task. We showed how the
parameters of the single linear attractor movements as well
as the transition behavior between the movements can be
learned. Learning the transition behavior is formulated
as classification problem. We showed how mp sequences
observed from kinesthetic demonstrations can be incorpo-
rated into one graph representation we call sequence graph.
A sequence graph allows to split the overall classification
problem into many smaller problems, as it is possible to
learn the transition behavior between mps locally for each
node in the graph. We presented two different types of se-
quence graphs and evaluated four different classifiers. The
approach was validated in three experiments using a real
seven dof Barrett wam robot with a four dof hand. The
results show that our system is able to learn the transition
behavior from very few demonstrations.

In future work we want to investigate how an optimal
sequence graph can be found, considering not only the
mp sequences but also the actual data sampled from the
demonstrations. Additionally, we plan to use co-activated
mps and a two-arm setup. Therefore we need methods for
synchronizing concurrently active movements.
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