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Mixture of Attractors: A novel Movement Primitive
Representation for Learning Motor Skills from

Demonstrations
Simon Manschitz1,2, Michael Gienger2, Jens Kober3, and Jan Peters1,4

Abstract—In this paper, we introduce Mixture of Attractors, a
novel movement primitive representation which allows for learn-
ing complex object-relative movements. The movement primitive
representation inherently supports multiple coordinate frames,
enabling the system to generalize a skill to unseen object positions
and orientations. In contrast to most other approaches, a skill is
learned by solving a convex optimization problem Therefore, the
quality of the skill does not depend on a good initial estimate of
parameters. The resulting movements are automatically smooth
and can be of arbitrary shape. The approach is evaluated
and compared to other movement primitive representations on
data from the Omniglot handwriting data set and on real
demonstrations of a handwriting task. The evaluations show
that the presented approach outperforms other state-of-the-art
concepts in terms of generalization capabilities and accuracy.

Index Terms—Learning from Demonstration, Learning and
Adaptive Systems, Motion Control

I. INTRODUCTION

DESPITE impressive results in the recent years, some of
the main challenges in the domain of Learning from

Demonstration (LFD) remain unsolved. For instance, learning
complex tasks usually requires more demonstrations than a
user would be willing to provide. One reason for the large
number of required demonstrations is that learning a skill
requires finding a mapping of a potentially large input space
(e.g., camera input), to a potentially large output space (e.g.,
desired joint positions). Depending on the task and robot, such
a mapping can become highly non-linear and almost arbitrarily
complex. If only a few demonstrations of a task are performed,
then only a small fraction of the input space is covered with
data. Learning an input to output mapping from this sparse
data often results in skills that are able to perform a task
if the environmental conditions are about the same as in the
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Fig. 1: The system learns a handwriting skill from kinesthetic demonstrations
by learning a set of attractors and their continuous activations over time. The
attractors can be defined in different coordinate frames, enabling the system
to generalize the learned skill to unseen whiteboard positions. The plot shows
the learned attractor activations for the handwriting task (thin lines). Blue lines
correspond to attractors represented in the world frame, red in the IAS frame
and yellow the HRI frame. The thick lines show the sum of the attractors
defined in the individual coordinate frames.

demonstrations. Yet, it is often not clear how the system will
generalize to unseen situations.

Our method aims at learning skills for tasks that require
handling multiple objects. We assume a task is demonstrated
a few times with varying object positions and orientations, as
depicted in Figure 1. From these demonstrations, the system is
supposed to learn a skill which generalizes to unseen positions
and orientations of the involved objects.

The main contribution of the paper is a novel movement
primitive (MP) representation, which we call Mixture of
Attractors (MOA). MOA represents movements in multiple
coordinate frames. When learning a skill, a weighting of the
coordinate frames is learned that explains the demonstrations
well. For instance, in a task phase where the robot is supposed
to manipulate an object, the weights of the coordinate frame
attached to this object will be large, allowing the robot
to manipulate the object at arbitrary positions. Moreover, a
continuous representation of the weights is learned, allowing
the robot to smoothly blend between successive movements.
The proposed learning algorithm for MOA is formalized as
convex optimization problem. Therefore, it does not rely on a
good initialization of the parameters.

A. Related Work

MPs are a tool for increasing the data efficiency of skill
learning algorithms. They are basic reusable building blocks
that are able to generate complex movements. By using MPs,
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the movement generation can be parametrized which leads to a
complexity reduction of the learning problem. Many different
MP representations have been proposed. Among the most
prominent ones are Dynamic Movement Primitives (DMPs,
[1]), Gaussian Mixture Models (GMMs, [2]), Stable Estimator
of Dynamical Systems (SEDS, [3]), Interaction Primitives [4]
or Probabilistic Movement Primitives (PROMPs, [5]). In
the following section, we discuss some of the approaches
utilizing MPs for learning skills from demonstrations. With our
approach, we aim for contributing to three important aspects in
the learning from demonstration domain: Learning from a few
demonstrations, Coordinate frame selection and Co-articulated
movements.

a) Learning from few Demonstrations: One of the main
challenges when learning skills from demonstrations is to ex-
tract as much information as possible from the demonstrations.
A human teacher usually is not willing to provide tens or
hundreds of demonstrations. Ideally, only a handful demon-
strations should be sufficient to learn a skill. Lee et al. [6] use
Principal Component Analysis for reducing the dimensionality
of the input data before segmenting the demonstrations into a
set of MPs. Extracting a set of MPs from the demonstrations is a
frequently used technique for decomposing the overall learning
problem into smaller parts which might be easier to learn (e.g.,
[7], [8], [9], [10]). Kappler et al. [11] learn to activate MPs
based on sensory input which may be potentially of a high
dimension. Yet, they assume the MPs are learned at a previous
stage. Kim et al. [12] learn a skill from few demonstrations
which may even be inaccurate. The movements generated by
many of the aforementioned MP representations are usually
modulated temporally (e.g., DMPs or PROMPs). In that case, the
input dimension is inherently reduced to one, which simplifies
the learning process. In this paper, we also modulate the
movements temporally. The reason why our approach is able
to learn complex tasks from a few demonstrations is the way
coordinate frames are integrated into the learning process.

b) Coordinate Frame Selection: When controlling a
robot in task-space, the generalization capabilities of a system
can be greatly improved if the MPs operate in task-spaces
which are defined relative to objects. If each object is associ-
ated with a coordinate frame and a task-space which controls
the robot in this coordinate frame, the system is inherently
able to generalize the movements to setups which have not
been seen in the demonstrations. As the teacher usually does
not want to specify which MP performs a movement relative
to which object, this parameter has also to be learned from the
demonstrations. Niekum et al. [13] present an approach that
extracts a set of MPs and selects an appropriate task-space
for each MP. The task-spaces are selected using a heuristic.
Heuristics are also used by [14], [15], [16] to select a task-
space for each MP. The Task-Parametrized Gaussian Mixture
Model (TP-GMM, [17]) generalizes the GMM to support multi-
ple coordinate frames and is for instance used in [18]. It does
not select the coordinate frame explicitly, but instead learns a
probability distribution over the coordinate frame weights. A
newer version of this approach is the Task-Parametrized Hid-
den Semi-Markov Model, where also the temporal correlation
of the individual mixture models is learned [19], [20]. Our

approach also does not select the coordinate frames explicitly.
Instead, it learns to activate a set of attractors represented in
different coordinate frames over time in a way which is most
consistent with the demonstrations. Estimating the activations
is formulated as convex optimization problem which does not
rely on a good initialization of the parameters, which for
instance is the case for the TP-GMM.

c) Co-Articulated Motions: Humans often tend to co-
articulate between successive movements [21], which renders
the problem of detecting start and end of individual move-
ments more difficult. Two MP representations which explic-
itly support co-articulated movements are GMMs and SEDS.
Calinon et al. [2], encode a movement as joint probability
distribution over the positions and velocities by using GMMs.
A movement is generated by conditioning the velocity on
the current position. SEDS also makes use of GMMs, but
additionally guarantees convergence to a desired target at
the cost of a larger computational effort. GMMs allow for
modeling an entire demonstration with a single probability
distribution. As the density function of a Gaussian is smooth,
the movements generated by a GMM are smooth as well
and therefore, the model can be utilized for modeling co-
articulated movements. PROMPs can also blend between two
successive MPs. Yet, it is not clear how to learn a blending
factor from demonstrations. Our approach learns to activate
a set of attractors so that the generated movement follows
the demonstrated behavior. If the human teacher transitioned
smoothly between two successive movements, the resulting MP
activations will change slowly, leading to the same behavior.

In summary, our framework learns to continuously activate
a set of attractors over time by solving a convex optimiza-
tion problem. The attractors can be represented in different
coordinate frames. Additionally, co-articulated movements are
supported explicitly. Altogether, the framework is able to
learn complex skills from a few demonstrations and is able
to generalize a skill to novel setups. The remainder of the
paper is organized as follows. In Section II, the MOA MP
representation is introduced formally. Next, Section III shows
how the representation can be used for robot control. The
approach is then evaluated in Section IV before concluding
and giving a short outlook on future work in Section V.

II. MIXTURE OF ATTRACTORS

The basic idea behind MOA is to represent a movement as
composition of very simple Dynamical Systems (DS). We refer
to an attractor as a spring-mass-damper system of the form

ẍ(t) = α(β(g − x(t))− ẋ(t)), (1)

where α and β are controller parameters. The parameters can
be set to guarantee the stability of the DS. In that case, the
DS converges to its attractor goal g for t → ∞. In this
paper, x corresponds to the Cartesian position of the robot’s
end-effector. Instead of having a single attractor, we assume
that complex movements are generated by a linear combination
of K attractors

ẍ(t) =
K∑
k=1

ak(t)α(β(gk − x(t))− ẋ(t)). (2)
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Hence, MOA defines a movement by a set of K attractor
goals gk and their activations ak(t). Note that the activations
explicitly depend on the time which allows for shaping the
trajectory and generate complex movements. We assume the
activations of each time-step sum up to one and therefore, the
equation can also be written as

ẍ(t) = α(β(Ga(t)− x(t))− ẋ(t)), (3)

where the attractor goals are summarized in the matrix
G = [g1, . . . , gK ] and the activations of one time step are
summarized in the vector a(t). In the following sections, we
show how the attractor goals and activations can be learned
from demonstrations and discuss some of the properties of
the MP representation.

A. Trajectory Tracking

We introduce the learning method by assuming we want to
follow a desired trajectory. Later, we focus on learning skills
from demonstrations which go beyond pure replaying of a
demonstration and extend the approach to support multiple
coordinate frames. The first step is to time-discretize (3) using
step-size h

xt =
2 + αh

1 + αh+ αβh2
xt−1 −

1

1 + αh+ αβh2
xt−2

+
αβh2

1 + αh+ αβh2
Gat

= c1xt−1 + c2xt−2 + c3Gat, (4)

where c1, c2 and c3 are constants to keep the equation
compact. We want to learn the parameters G and at, so that
we track a demonstrated trajectory τ = {y0,y1, . . . ,yN−1}
as closely as possible. Here, N is the length of the demon-
stration. In this section, we assume to know the goals G and
want to estimate the movement primitive activations at. In
order to track the trajectory, we minimize the mean squared
error (MSE) over time between the demonstrated trajectory and
the trajectory generated by MOA

J =
N−1∑
t=0

(xt − yt)
T
(xt − yt) . (5)

The aim of this section is to minimize the cost function with
respect to the activations at. Note that our system is fully
determined by the attractor goals, their activations over time
and the start points x0 and x1. Therefore, as a first step xt is
expressed in terms of these variables

xt = λtx1 + µtx0 +
N−1∑
i=0

γt,iGai. (6)

The scalar constants λt, µt and γt,i can be specified recursively

λt = c1λt−1 + c2λt−2, λ0 = 0, λ1 = 1,

µt = c1µt−1 + c2µt−2, µ0 = 1, µ1 = 0,

γt,i = c1γt−1,i + c2γt−2,i + c3δt,k, γ0,i = 0, γ1,i = 0,

where δ is the Kronecker delta with δi,j = 1 for i = j and
δi,j = 0 otherwise. Given a trajectory τ , we can compute the

constants, set x0 = y0, x1 = y1 substitute ŷt = yt−λtx1−
µtx0 and plug this term into the cost function

J =
N−1∑
t=0

(
N−1∑
i=0

γt,iGai − ŷt

)T (N−1∑
i=0

γt,iGai − ŷt

)
. (7)

If we concatenate all movement primitive activations in a
single vector a =

[
aT0 , . . . ,a

T
N−1

]T
and concatenate Ĝt =

[γt,0G, . . . , γt,N−1G], then (7) can be rearranged to

J =
N−1∑
t=0

(
Ĝta− ŷt

)T (
Ĝta− ŷt

)
,

= aT

(
N−1∑
t=0

Ĝ
T

t Ĝt

)
︸ ︷︷ ︸

0.5H

a− 2

(
N−1∑
t=0

ŷTt Ĝt

)
︸ ︷︷ ︸

−fT

a+
N−1∑
t=0

ŷTt ŷt︸ ︷︷ ︸
const

,

=
1

2
aTHa+ fTa+ const , (8)

which can be minimized via Quadratic Programming (QP). In
addition to the cost function, constraints have to be added to
ensure the individual activations are in the range [0, 1] and the
activations for each time step t sum up to one. Therefore, the
overall minimization problem is

min
a

1

2
aTHa+ fTa, such that

{
‖at‖1 = 1,
0 ≤ a ≤ 1.

(9)

The optimization problem (9) can now be solved using an out
of the box standard QP solver. Please note that the matrix H is
a sum of the form

∑
Ĝ
T

t Ĝt. Therefore, the matrix is positive
semi-definite and a standard QP solver is guaranteed to find a
global minimum.

B. Parametrizing the Activations

So far, the optimizer could freely choose the activations for
each point in time. This freedom may lead to jumps in the
activations, potentially resulting in jerky movements. In order
to generate more natural, smooth movements, the activations
can be parametrized. In that case, the optimizer is only allowed
to change the activations at fixed points in time (e.g., every
50ms). We call these points support points. In between support
points, the activations are interpolated. If we summarize all
activations of the support points in a matrix S ∈ RK×NS ,
where NS is the number of support points and k the number
of attractors, the activations at time-step i are interpolated
according to

ai = Swi. (10)

Here, wi is a weight vector for time-step i. It determines how
the activations will be interpolated. In order to generate smooth
movements, we use Radial Basis Functions (RBFs)

wi,s =
e−γ

2(ti−ts)2∑NS

u=0 e
−γ2(ti−tu)2

, (11)

where wi,s is the sth value of vector wi, ti is the time at
time step i and ts is the (temporal) center of the RBF. The
bandwidth γ of the RBF is a hyperparameter that determines
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how smoothly the weights change over time. If we plug (10)
into (9) and rewrite the matrix S as a vector s by concatenating
the columns of the matrix, the Quadratic Program can be
reformulated as

J =
1

2
sT Ĥs− f̂

T
s, (12)

where the size of the matrix Ĥ is KNS ×KNS . Note that
the matrix H from the original formulation in (9) has a size
of KN × KN , where N is the number of time steps. As
NS < N , parametrizing the activations does not only lead to
smoother movements but also reduces the computational costs
and memory requirements of the optimization.

C. Support for Multiple Coordinate Frames

In the previous sections, we concatenated Ĝt =
[γt,0G, . . . , γt,N−1G]. Here, the goal matrix G is constant
over time. In order to support multiple coordinate frames,
we can relax this assumption. An attractor can be defined
in a coordinate frame which is not the world frame. In that
case, it’s attractor goal can be transformed into the world
frame for each time-step. Hence, the goal matrix at time-step
t becomes Gt, where the columns of the matrix correspond
to the attractor goals transformed into the global world frame.
Changing the fixed goal matrix to a matrix which varies over
time does not change the fact that the quadratic matrix Ĥ is
positive semi-definite. Therefore, the QP can still be solved in
a globally optimal manner. We would like to point out that
the QP has to be solved only once. In a real-world task, if
a coordinate frame is associated with an object, the attractor
goals defined in this frame automatically move together with
this object. Therefore, a movement which is defined relative
to these attractors is automatically adapted to changing object
positions and orientations without solving the QP again.

III. USING MIXTURE OF ATTRACTORS FOR ROBOT
CONTROL

So far, we introduced the MOA framework and showed
how the activations can be learned to track a demonstrated
trajectory. Next, we show how MOA can be used for learning
a skill from demonstrations of a task. To do so, we discuss
two aspects that were not covered in the paper so far. First,
we show how the number of attractors and their goals can be
learned from the demonstrations. Second, we discuss which
coordinate frame to choose for each attractor. At the end of
the section, we present the final skill learning algorithm.

First of all, it is notable that a skill is learned using multiple
demonstrations of a task. So far, the attractor activations were
learned by minimizing the MSE between a trajectory generated
by MOA and a single demonstration. For learning a skill,
the MSE of M demonstrations add up to

J =

M−1∑
m=0

N−1∑
t=0

(
x
(m)
t − y

(m)
t

)T (
x
(m)
t − y

(m)
t

)
. (13)

As the MSE of the different demonstrations simply add up, the
form of the QP does not change when minimizing J . There-
fore, for M demonstrations, we can compute M independent
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Fig. 2: Toy example to illustrate the MOA optimization. On the left, two
demonstrations (blue and red) are shown in two different coordinate frames.
The demonstrations start at the same position in the first frame, approach a
target in this frame and then approach a target in the second frame. The
attractor goals are marked with an x. On the top right, the ratio of the
precision (reciprocal of the variance) in the two coordinate frames is shown
over time. The frame activations resulting from the MOA optimization (bottom
right) are akin to the precision.

QPs and then compute the sum of all Ĥ’s and f̂ ’s to form a
single QP which has the same form as (12).

A. Choosing the Number of Attractors and their Goals

No matter how many attractors are chosen, the points Ga
generated by MOA will always lie within the convex hull of
their attractor goals, as the activations sum up to one. For
two linearly independent attractors, the system would generate
points on a line. For three linearly independent attractors points
within a triangle. A generic solution to estimate the number of
attractors in a D dimensional space is to choose it so that any
trajectory within this space can be generated by the system.
Therefore, we propose to use 2D attractors, where D is the
dimension of the space the MPs operate on1. We propose to
choose the attractor goals by computing the minimum and
maximum values for each dimension of the demonstrations.
The attractor goals then build the corner points of the bounding
box of the demonstrations. If multiple coordinate frames are
used, 2D attractors are chosen for each coordinate frame
independently. The attractor goals are illustrated in Figure 2
for a simple 2D toy example.

B. Determining the most relevant Coordinate Frame

When learning a skill, we associate the world and each
object in the scene with one coordinate frame. The attractor
activations should be learned in a way that yields the best
generalization performance. For instance, if a task requires
approaching an object, the activations of the attractors which
control the robot in the coordinate frame of this object should
be large during this phase of the task. A common approach
for choosing coordinate frames is to compare the variance
of the data over multiple demonstrations in the individual
coordinate frames (e.g., [14], [15]). For a certain task phase,
the movement will be represented in the frame that has the
lowest variance. Our approach leads to similar results without
using a heuristic to decide which coordinate frame to choose
for which phase of a task. Instead, the optimization converges

1In general, a set D + 1 attractors can be found which covers the
demonstrations. We use a 2D bounding box as it is more intuitive and we
represent movements only in 2D and 3D space in this paper.
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to a solution where the activations of the attractors represented
in a coordinate frame will be large if the variance is low.

Our main assumption is that the demonstrations are aligned
in time and the movement will be modulated temporally. For
aligning the demonstrations, we use Dynamic Time Warping
(DTW). As the demonstrations are represented in different
coordinate frames, it is not straightforward to align them tem-
porally. As cost function to measure the distance between two
points xi and x̂i from different demonstrations we measure
the Euclidean distance in each frame k and use the overall
minimum as cost term

DTW(i, j) = min
k

∥∥∥x(k)
i − x̂

(k)
j

∥∥∥
2

, (14)

where x
(k)
i is the ith data point of a demonstration represented

in the kth coordinate frame. After aligning the demonstrations
in time, the attractor goals are computed for each frame
separately according to the previous section and subsequently
transformed into the world frame for all non-world frames.
The 2D attractor goals of frame k at time step t will be noted
as G(k)

t . The attractor goals of the frames are stacked together,
resulting in a single goal matrix

Gt =
[
G

(1)
t , . . . ,G

(K)
t

]
(15)

for each time step. Now, the attractor activations can be
computed according to (12). The process of estimating the
activations is illustrated in Figure 2 by using a simple toy
example. The optimizer can freely choose the attractor activa-
tions over time, but has to explain all demonstrations with
the same sequence of activations. As it is not possible to
do so in a single coordinate frame, the optimizer converges
to a solution where the frame activations (sum of attractor
activations represented in the same frame) vary over time.

C. Choosing the Hyperparameters
When using the suggested bounding box method for choos-

ing the positions and numbers of the attractors goals, the
only hyperparameters a user has to choose are the number of
support points and the bandwidth γ of the corresponding RBF.
In all experiments presented in this paper, the bandwidth of
each RBF was set so that the function evaluates to a value
α = 0.1 at the center’s of the neighboring RBFs. The numbers
of support points were chosen by increasing the number until
we were satisfied with the results. In future work, we plan
to develop a method for optimizing the hyperparameters in a
principled manner.

D. Final Algorithm
The steps MOA performed for learning a skill from demon-

strations are summarized in Algorithm 1. First, the demon-
strations are aligned in time using DTW. Next, the centers and
bandwidth of the support points are computed. The attractor
goals are computed for each frame separately. Then, the goals
of the frames are transformed into the world frame for each
time-step. Finally, the QP is generated and solved. The learned
skill is composed of the resulting support point activation
matrix S, the attractor goals G and the parameters of the
support points.

Algorithm 1 MoA Learning Algorithm
Require: Trajectories X(1), . . . ,X(M), Coordinate Frames k = 1, . . . , K
1: Align trajectories using DTW (14)
2: Compute support point centers ts and bandwidth γ according to (11)
3: Compute support point weights W
4: for each Frame k do
5: Compute attractor goals G(k) (Section III-A)
6: Ĥ = 0, f̂ = 0
7: for each Trajectory m do
8: for each Frame k do
9: Convert goals to world frame G

(k)
t

10: Concatenate goal matrices to single matrix for each time-step Gt (15)
11: [Ĥ, f̂ ] += generateQP(X(m),W ,Gt) (12)
12: Solve QP(Ĥ, f̂ ) to find support point activations S
13: return Goals G, Support point activations S, centers ts and bandwidth γ

IV. EVALUATION OF THE APPROACH

For evaluating MOA, we performed two experiments. The
aim of the first experiment was to compare some of its
properties to DMPs and GMMs. These MP representations have
similar properties to MOA, which allows for a fair comparison.
The comparison is carried out on letters from the Omniglot
handwriting data set. In a second experiment, we evaluated
the generalization capabilities of the system on a real robot
handwriting task. The task is demonstrated kinesthetically and
later reproduced on a real seven degrees of freedom (DOF) Bar-
rett WAM robot. Additionally, we compare the generalization
capabilities with two state-of-the-art approaches.

A. Handwriting Evaluation

The Omniglot data set was introduced by Lake et al. [22]
as a 2D data set for one-shot learning. It contains over 1500
different handwritten characters from 50 different alphabets.
Each character was drawn online using Amazon’s Mechanical
Turk by 20 different people. The images come with stroke
data as sequences of 2D coordinates associated with time
information t. We use the data set to compare MOA with DMPs
and GMMs. All MP representations are trained on characters
from the Latin alphabet. Before training, we removed all
characters that were not drawn continuously (e.g., more than
one stroke was used as the participant lifted the pen). The
remaining characters were preprocessed as follows. First, we
shifted each character so that the mean of the image is at
[0, 0]. For each character, we computed the average standard
deviation from the mean and subsequently scaled each image
to have the same standard deviation. As a last preprocessing
step, we aligned the trajectories in time using DTW. The
preprocessing of the data was the same for all methods.

For a fair comparison, the movements generated by all
methods were modulated temporally. For the GMM approach,
a joint probability p(t,v) was learned. The movements were
then generated by conditioning the current velocity on the time
p(v|t). For MOA and DMPs, the basis functions were activated
temporally. We did our best to tune the hyperparameters of all
methods. For the GMM approach, we increased the number
of Gaussians to 15 until the Mean Squared Error (MSE)
between the generated and demonstrated movements did not
increase anymore. For MOA and DMPs we used the method
suggested in Section III-C, which resulted in 20 support points.
In contrast to MOA, the movements generated by DMPs are
conditioned on a desired start and end point. To add this
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Fig. 3: Results on the Omniglot handwriting data set. The upper plots show the demonstrations and reproduced trajectories in 2D space for two letters of the
data set. For MOA, additionally the attractor goals are shown. All methods except for MOA-S are time driven. For the spatially driven MOA-S, the gray lines
show the attractor landscape. Here, the movements converge to the gray dots. The lower plots show the corresponding mean squared error over time (average
and ± one standard deviation).

property to our MP representation, we associated a coordinate
frame with the start and end points of each demonstration,
respectively. As these points vary over the demonstrations, the
attractor goals (transformed into the world frame) are auto-
matically shifted together with the origins of the coordinate
frames. As the MPs represent movements in 2D space, four
attractors were used for each coordinate frame. The locations
of the attractor goals were set according to the bounding
box method suggested in Section III-A. In addition to the
aforementioned MP representations, we also trained a second
variant of MOA, where the weights of the basis functions were
not conditioned on time, but on the current spatial position xt.
We will refer to this variant as MOA-S. Here, we also used 20
support points. The centers of the basis functions were found
by clustering the demonstrations with KMEANS and choosing
the centers of the clusters as centers of the basis functions.

The results for two exemplary characters from the Latin
alphabet are shown in Figure 3. The MSE between the
drawn characters and the ones generated by the different time
driven MP representations are in the same range with MOA
slightly outperforming the other representations. DMPs per-
form worst for the letter ‘a’. The reason is that the letter is
not drawn very consistently. As DMPs depend linearly on the
difference between start and end point, they do not seem to
be robust against movements that have similar start and end
points, but different shapes. The spatial variant MOA-S has
the largest average error of all MP representations. While the
generated movements reflect the general shape of the letters,
they either converge to a spurious attractor (‘a’) or enter a
cycle (‘s’). Please note, however, that the focus of this paper
are time driven movements. Therefore, the intention of MOA-S
was to evaluate if it is in principle possible to learn spatially
driven movements with our MP representation. We consider it
future work to investigate in more detail MOA’s applicability
for spatially driven movements, for instance by analyzing im-
portant properties such as asymptotic stability (e.g., [23]). The

conclusion from the Omniglot experiment is that the sequences
of MP activations resulting from the MOA optimization process
lead to movements which closely follow the demonstrations.

B. Robot Handwriting Evaluation

In a second experiment, we demonstrated a handwriting
task on a Barrett WAM robot via kinesthetic teaching. As
end-effector, a pen was attached to the robot, as shown in
Figure 1. The task was to first write “IAS” on one whiteboard
and subsequently write “HRI” on a second whiteboard. The
intention of the experiment was to evaluate the generalization
capabilities of our method. Therefore, the whiteboards were
placed at different locations on the table for each demonstra-
tion (see Figure 4). The learned skill was then reproduced
on a setup which was not seen in the demonstrations. For
each demonstration, the 3D position of the tip of the pen was
recorded in world coordinates and relative to each whiteboard.
In order to generalize the skill to unseen whiteboard positions,
the system has to learn to control the tip of the pen in
the correct coordinate frame in each phase of the task. For
instance, when writing “IAS”, the pen has to be controlled in
the coordinate frame of the corresponding whiteboard.

Overall, we performed six demonstrations of the task. The
data was recorded with a frequency of 40Hz. Before training,
the demonstrations were aligned in time using DTW. The
movement generated by our system was modulated temporally
by the activation of 75 equally distributed support points.
First, we trained our system using all six demonstrations.
Subsequently, we put the whiteboards to positions that were
different from the demonstrations and executed the skill on
the real robot. The results are shown in Figure 4. The robot
was able to generalize to the unseen setup and mastered the
task for the new whiteboard positions. The system learned to
control the pen in the correct coordinate frame for each phase
of the task and therefore was able to generalize the skill to the
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Fig. 4: Pictures of the six setups used for demonstrating the handwriting task (left). On the right, the setup for the reproduction is shown. For the demonstrations,
we used a red pen and for the reproduction a green pen. The differences between the demonstrations and reproduction can be explained with the utilized
controller and are not a result of the learning process.
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Fig. 5: Comparison of MOA with two other approaches. The upper plots show the frame activations over time. The colors correspond to the individual
coordinate frames ( world frame, first whiteboard, second whiteboard). The lower plots show the predicted 3D paths for the test setup. The colored
rectangles correspond to the two whiteboards. For the plots on the left, we trained MOA with a combination of demonstrations which did not lead to a proper
discrimination of the coordinate frames. The other representations were able to generalize the skill to the test setup. Compared to VAR-DMP, MOA and TP-GMM
also learn to blend smoothly between successive movements.

new situation. During execution, we control the orientation of
the end-effector in null-space with compliance, as we focus
on learning Cartesian positions in this paper.

Next, we trained two state-of-the-art-methods on all demon-
strations and evaluated their generalization capabilities in
simulation. The first method is the TP-GMM [17] introduced
earlier. The method uses Gaussian distributions to model the
data spatially in the different coordinate frames. For a fair
comparison with our approach, we augmented the state-space
with time. When reproducing a skill, we conditioned the
desired position on the current time, so that the movement
was also modulated temporally. We used 75 Gaussians for
training, as more Gaussians did not lead to an improvement
of the results anymore. The second method is an approach
by Ureche et al. [15]. Here, the authors explicitly choose
the coordinate frames over time based on the variance of the
demonstrations. For a fixed time window and each frame, they
compare the variance in this time window to the variance of
the entire demonstration. The frame with the lowest value of
the corresponding cost function is chosen as winner. For each
resulting segment, we use DMPS to represent the movements
in the corresponding frames. In the following, this approach
will be referred to as VAR-DMP. Figure 5 shows the resulting
coordinate frame selections of all three approaches. The result-
ing frame activations of all three approaches look quite similar
and all approaches generalize the learned skill to the test setup.

VAR-DMP successfully writes the two words, but does not learn
the transition phase when changing the coordinate frame. As
a consequence, the generated movement is less smooth and
sometimes points in the wrong direction for a short period of
time (e.g., in the beginning or after writing the S of IAS). TP-
GMM performs slightly worse compared to MOA. One reason
why MOA follows the shape of the movement more accurately
is that it takes the attractor activation recursively into account,
whereas TP-GMM treats successive data points as they were
independent.

In order to evaluate if our system can learn the handwriting
skill from fewer demonstrations, we additionally trained it
individually on all 63 possible subsets of demonstrations (e.g.,
demonstration 1, 2, and 4) and evaluated the generalization ca-
pabilities of the learned skill in simulation. Figure 5 shows the
frame activations and generated trajectory for one exemplary
subset. While some of the learned skills were able to reproduce
the task for the test setup, others were not. All skills were
able to reproduce the task on the setups they were trained
on. For the handwriting task, a good metric for quantifying
the generalization capabilities is to measure the sparsity of
the individual coordinate frame activations. Ideally, the pen
should be controlled in the world frame in the beginning of
the task, as the robot always started from the same initial
joint configuration. When writing the two words IAS and HRI,
the pen has to be controlled in the corresponding coordinate
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Fig. 6: Comparison of the sparsity of the frame activations for MOA and TP-
GMMs. The solid lines show the mean of the sparsity, while the marks show
the results for the individual combinations of the demonstrations. With an
increasing number of demonstrations, the discrimination of the coordinate
frames becomes better. We observed that a sparsity of at least 0.9 (dashed
line) is required to generalize to the test setup.

frames of the whiteboards. Therefore, we measure the average
sparsity of the activations as a metric for the generalization
capabilities

Jsparsity =
1

N

N−1∑
t=0

K∑
k=1

∥∥∥a(k)
t

∥∥∥2
1

, (16)

where a
(k)
t are the activations of the attractors which are

represented in coordinate frame k. In our case, K = 3. A
fully sparse solution would result in Jsparsity = 1, while a
equally distributed solution would result in Jsparsity = 1/K.
Figure 6 shows the average sparsity for all training instances.
The solutions become sparser if the skill is trained on more
demonstrations. Depending on how dissimilar the whiteboard
positions are in each demonstration, two demonstrations can
be sufficient for learning a solution which is as sparse as the
solution for all six demonstrations. We consider it future work
to investigate why certain combinations lead to more sparse
solutions than others and why the variance of the sparsity is
larger compared to the TP-GMM.

V. CONCLUSION AND FUTURE WORK

We presented the Mixture of Attractors (MOA) movement
primitive representation. Due to its integration of multiple
coordinate frames, MOA can be utilized for learning complex
object-directed skills which generalize well to unseen object
positions and orientations. In addition, the system blends
smoothly between successive movements. Learning a skill
is formalized as convex optimization problem. Therefore, in
contrast to most other approaches, the quality of the skill
does not depend on an initial estimate of parameter values.
The evaluation showed that MOA outperforms two state-of-
the-art approaches in terms of accuracy and/or generalization
capabilities. In future work, we want to investigate MOA’s
capabilities of learning spatially-driven movements, as well
as learning from non-optimal or partial demonstrations. In
addition, we want to compare MOA to other MP representations
such as TP-HSMM or PROMPs.
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