
Learning to Unscrew a Light Bulb from Demonstrations
Simon Manschitz, Technische Universität Darmstadt, Germany

Jens Kober, Bielefeld University, Germany

Michael Gienger, Honda Research Institute Europe, Offenbach, Germany

Jan Peters, Technische Universität Darmstadt, Germany

E-Mail: manschitz@ias.tu-darmstadt.de Web: www.ias.tu-darmstadt.de

Abstract

In this paper we show a way of learning how to sequence predefined basic movements in order to reproduce a previously

demonstrated skill. Connections between subsequently executed movements are learned and represented in a graph

structure. Learning the switching behavior between connected movements is treated as classification problem. Due to

the graph, the overall accuracy of the system can be improved by restricting the possible outcomes of the classification

to connected movements. We show how the graph representation can be learned from the observations and evaluate

Support Vector Machines as classifier. The approach is evaluated with an experiment in which a 7-DOF Barrett WAM

robot learns to unscrew a light bulb.

1 Introduction

Programming by demonstration (PBD) is an intuitive way

of programming a robot. Here, a teacher demonstrates a

skill to a robot and from observing these demonstrations

the robot learns how to perform the skill by itself. As a

consequence, there is no need to program a robot in the

old-fashioned way where the programmer has to be an

expert in the robotics domain. The demonstrations allow

for creating a connection between perception and action.

Due to this connection it is possible for a robot to learn

how to react to its environment. Applying this learning

method can therefore lead to more flexible robots and this

is why PBD has been a hot topic in robotic research over

the past years. Other names for PBD found in the liter-

ature are imitation learning or learning from demonstra-

tions [1].

One possibility for a teacher to demonstrate a skill is

to perform the task by himself. In that case, the robot

needs a measurement system for tracking the movements

of the teacher. Such systems are expensive and a map-

ping between the measured positions of the human body

and the robot’s joints has to be found, which is compli-

cated due to the correspondence problem [2]. We there-

fore perform the demonstrations kinesthetically. Here,

the teacher guides the robot through the movement by

taking its arm, similar to how parents teach their child a

task.

1.1 Problem Statement

Solving a complex task by executing basic movements

subsequently sounds very intuitive to us, as this divide

and conquer strategy is a typical problem solving ap-

proach of humans. Basic movements are often referred

to as movement primitives (MPs) in literature [3, 4]. As

we aim at sequencing MPs, we assume for simplicity they

are given and we do not have to learn them at this stage

(as they have been previously learned). The main ques-

tion tackled by this work therefore is: When to execute

which primitive? The goal is to find an answer to this

question from the data sampled by kinesthetic demonstra-

tions, without further knowledge about the actual task.

Kin. Demonstrations

Learning Skill Representation

Movement Library Reproduction

Classifier

Classifier

Classifier

ClassifierClassifier

Data Training

Figure 1: A 7-DOF WAM arm with a 4-DOF hand has

to learn how to unscrew a light bulb from kinesthetic

demonstrations. We evaluate our approach with this ex-

ample in simulation as well as on the real robot.

An overview of the approach is shown in Figure 1. The

demonstration data is labeled manually, which means it

is clear at every point in time which MP was active during

the demonstrations. Based on this data, a graph is created

as representation of the skill. The nodes of the graph cor-

respond to MPs and the transition conditions are learned

by applying machine learning methods. The approach is

validated with an experiment where a Barrett WAM robot

has to unscrew a light bulb. This task requires fine force

interaction between the robot and its environment in or-

der to not break the bulb or slip with the fingers during

unscrewing. Also, the sequence of MPs is undetermined

ISR/ROBOTIK 2014

beforehand as the amount of unscrewing repetitions de-

pends on the position of the bulb in its socket. Hence, the

task has strong requirements on the generalization capa-

bilities of the algorithm as well as on the accuracy of the

whole system.

1.2 Related Work

Work on organizing and sequencing sets of MPs can be

roughly categorized into two categories, both having dif-

ferent views on the learned system. The traditional view

on such a system is interpreting the switching behavior as

discrete events in a continuous system [5, 6]. Here, only

one MP is active at the same time and the connections

between the MPs are often graph based. In [7], an event

is added for every observed switch of the demonstration,

whereby the transition connects the involved MPs and is

labeled with the switching probability. A sequence can

then be generated by sampling randomly from the graph.

Finite state machines are akin to graphs and can also be

used to model transitions between MPs [8].

The second possible view on the system is to see it as

completely continuous entity. Here, MPs can be concur-

rently active, meaning that each MP can decide for itself

whether it should be active or not. Additionally, MPs usu-

ally can be gradually active. The resulting behavior is

a superposition of all (partially) active MPs and the se-

quence is therefore mostly implicitly defined. For exam-

ple, the authors of [9] model the system as a recurrent

neural network (RNN) in which MPs can be concurrently

activated and are able to inhibit each other. This RNN

architecture leads to smooth movements of the robots.

The drawback is that their model is hard to learn and the

sequence has to be defined by hand. In [10], MPs are

encoded as Dynamic Movement Primitives (DMPs) and

linked with expected sensory data. Succeeding move-

ments are selected by comparing the current sensor val-

ues with the expected ones and choosing the best match.

The sequence representation is thus implicit and relies

only on the sensor data.

Although much effort has been put into learning single

movements of various complexity (e.g., [11, 12, 13]), re-

search on sequences of movements is usually restricted to

very simple skills. For such skills, the switching behavior

is mostly either hand-crafted or the order of movements

is always the same (e.g., [14, 15]). Closest to our work

is the work presented in [16]. Here, a task is represented

with a FSM that is learned from the demonstrations. The

switching behavior is also treated as classification prob-

lem, but the classification is not performed at every time

step. Due to that, their approach is not suitable for tasks

that require finer decisions at a smaller scale. Other au-

thors use graphs to represent sub-goals or constraints of

a task. In that case, a transition is triggered if a goal is

reached or all constraints are fulfilled [17, 18, 19]. While

such approaches can lead to simple models, their flexibil-

ity is usually limited.

2 Learning Sequential Skills

Next, we focus on our approach and explain it in de-

tail. In Section 2.1, the graph representation is introduced

and formalized. Section 2.2 shows how a graph can be

learned from the demonstration data. The final step then

is to learn the switching behavior between connected MPs

in the graph, which is the topic of Section 2.3.

We denote a MP as pi and the set of MPs as P =
{p1, p2, ..., pn}. In this work a MP is a dynamical sys-

tem (DS) with an attractor behavior. Each DS has a goal

in task space coordinates that should be reached if the

MP is executed. A goal can be a desired position of a

robot body, joint angle, force or a combination thereof

and can be defined relative between bodies using refer-

ence frames. The feature set is denoted as x ∈ R
n. The

features are not global but assigned as output vectors to

MPs, leading to one output vector xi per MP pi.

In our approach, the switching behavior is considered to

be discrete. Therefore only one MP is active at the same

time and it is clear from the labels of the demonstration

data which MP was active at each point in time. Figure 2

shows such exemplary demonstration data for a simple

toy example. The example will be used throughout this

section and consists of three different MPs, indicated by

different colors. The MPs are chosen arbitrarily and have

no further meaning, but show the essential characteristics

of our approach. The labels are depicted by the back-

ground color. Black vertical lines indicate a switch be-

tween MPs and are referred to as transition points (TPs)

in the following. The feature dimension is three, whereas

every MP has one associated feature.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Sample

F
ea

tu
re

V
al

u
e

Figure 2: Sampled (labeled) data of one demonstration.

The background color indicates the activated MP, while

the plot colors show which feature belongs to which MP.

In this simplified example each MP has only one associ-

ated feature.

For every point in time, the feature vector determines the

current state of the robot. The learning algorithm has to

find a mapping between the state of the robot and the MP

to be executed in order to sequence the MPs properly. The

straightforward way of applying machine learning meth-

ods to this problem would be to train a single classifier

with the labeled demonstration data. The skill could then

be reproduced by choosing the classification outcome of

the current feature values as next executed MP. However,

complex skills involve many different MPs and due to fea-

ture ambiguities the classification may yield unsatisfying

results. We therefore introduce a graph structure in which

each node corresponds to a MP. The graph is learned from

the demonstrations and the classification outcome is re-

stricted to the current node in the graph and its successors

as presented in the following.

2.1 Representing Skills with a Sequence

Graph

A sequence graph is a directed graph in which each

node ni is linked to a MP. This mapping is not injective

which means a MP can be linked to more than one node.

During reproduction, a MP gets executed if a linked node

is considered active. Transitions in the graph lead to suc-

ceeding MPs that can be executed if the current MP has

finished. A transition tk,l is connecting the node nk with

nl. Each transition is linked with the corresponding TP at

which it was observed during the demonstration. As the

same transition can be observed multiple times, multiple

TPs are possible.

Having m nodes in the graph, we use a m×m transition

matrix T to describe one sequence graph. As it is always

possible to continue with the execution of the current MP,

the transition tk,k exists for all k.

Before creating a sequence graph, the sequential order

Si for each demonstration is extracted from the sampled

data, resulting in one directed acyclic graph with nodes

ni for each trial. The main step now is to combine these

graphs into one representation of the skill, which can be

a hard problem as the algorithm has to work solely on the

observations. For example, a skill can be shown several

times with different sequential orders of the MPs. From

the algorithmic point of view it is not always clear if

the ordering is arbitrary for the skill or if the differences

can be linked to some traceable sensor events. Hence, a

heuristic is needed which interprets the ordering in cases

where multiple options are possible. We show one pos-

sible heuristic by investigating a graph structure we call

global sequence graph (GSG).

The GSG for the toy example is shown in Figure 3. One

essential characteristic of a GSG is that a node is not only

linked to a MP but can also be considered to be a state

of the actual sequence. A MP can therefore appear multi-

ple times in one representation as depicted in the figure.

Here, two nodes are linked to the red MP because the se-

quence was considered to be in two different states when

they were executed.

25 60,110

175

85,140

220

Figure 3: Based on the sequential order of the demon-

strations, the skill is represented with a sequence graph.

The transitions are linked with the corresponding data

points of the transitions.

The repeated appearances of the green-blue transi-

tions (see Figure 2) instead are represented by one node

per MP and two transitions, creating a cycle in the graph.

The reason is that consecutive executions of the same se-

quence of MPs are considered to be a repetition of the

same movement. Such a movement can be demonstrated

an arbitrary number of times, but corresponds to one state

of the sequence. As soon as a repetition is interrupted by

switching to a different MP, the system is considered to

be in a new state. Therefore, a transition to a new node

linked to the red MP is added instead of a transition lead-

ing back to the existing one.

Repetitions are also advantageous when describing the

task of unscrewing a light bulb, where the unscrewing

movement has to be repeated several times depending on

how firm the bulb is in the holder. As the number of rep-

etitions are fixed for each single demonstration, the al-

gorithm has to conclude that different numbers of repe-

titions of the same behavior appeared in the demonstra-

tions and incorporate this information into the final rep-

resentation of the task.

2.2 Learning the Skill Representation

For creating a GSG three major steps have to be per-

formed:

1. Create one acyclic graph T i for each demonstra-

tion.

2. Replace repetitions of MPs with cyclic transitions.

3. Create one global representation T of the skill

based on the updated graphs T i.

The first point is trivial as the acyclic graph represents

the MP orders directly given by the observations. Thus,

the sequential orders can be taken directly from the main

diagonal of T . The second point is called folding and

its pseudo code is shown in Algorithm 1. The al-

gorithm starts with the sequential order S with n ele-

ments and searches for a repetition of l = ⌊n/2⌋ MPs,

meaning longer repetitions are preferred over shorter

ones. The method findRepetition starts from the left

and compares the MPs of the nodes {n0, n1, . . . , nl} with

{nl+1, . . . , n2l+1}.

If both node chains match, the node pairs

{n0, nl+1} . . . {nl, n2l+1} get merged. If the chains do

not match, the starting position is shifted to the right and

the method starts from the beginning with n1 as starting

point. The shifting is done until the end of the list is

reached. Next, l is decremented by one and all previous

steps are repeated. The algorithm terminates if the cycle

size is 1, which means no more cycles can be found.

When merging two nodes nA and nB , the input and out-

put transitions of node nB become input and output tran-

sitions of nA. If an equal transition already exists for nA,

only the associated TPs are added to the existing transi-

tion. Note that the cyclic transition is introduced when

merging the nodes n0 and nl+1, as this leads to the in-

put transition tl,l+1 being bend to tl,0. After each itera-

tion of the algorithm, the nodes of the latter chain are not

connected to the rest of the graph anymore and can be

removed from the representation.

Algorithm 1 Graph folding

Require: T

S = getSequenceOrders(T);
repetition = findRepetition(S);
while repetition.found do

M = ∅;
m = repetition.end − repetition.start + 1;
for i = repetition.start to repetition.end do

mergeNodes(S(i+m),S(i));
M = M ∪ S(i);

tail = findTail(S, repetition.end + 1);
repetition = findRepetition(S);
if !repetition.found and tail .found then

for i = tail .start to tail .end do

mergeNodes(S(i+m),S(i));
M = M ∪ S(i);

removeNodes(M);
S = S \M ;

To allow escaping a cycle not only at the end of a repeti-

tion, the algorithm also searches for an incomplete cycle

after a found repetition. This tail is considered to be part

of the cycle and is also merged into the cyclic structure.

The toy example also contains an incomplete cycle, as the

green-blue repetitions end incompletely with the green

MP (see Figure 2). Without considering incomplete rep-

etitions, the GSG would contain two nodes for the green

MP, both having incoming transitions from the first blue

MP. In that case, the decision whether to escape the cycle

had to be made when the blue MP is executed. During

reproduction of the skill, the sensor events necessary for

leaving or staying in the cycle might not be available at

the time. As a consequence, the system may get stuck in

the loop or is not entering the loop at all.

The final step of creating a GSG is to combine the graphs

of each demonstration to one overall representation of the

demonstrated skill. This step is called merging, as sev-

eral separate graphs are merged into one graph. Algo-

rithm 2 merges two graphs and thus gets called n − 1
times for n demonstrations. The algorithm works as fol-

lows. The goal is to step through both graphs simultane-

ously from left to right, merging equal nodes and intro-

ducing a branch as soon as two nodes differ. Two nodes

are considered as equal if the columns of the correspond-

ing matrices are equal, which means both nodes use the

same underlying MP and have the same input transitions.

Two graphs are compared with each other by extracting

their sequence orders first. A sequence order is a path

through a graph where only left-to-right transitions are

considered. The toy example has two possible orders:

red, green, blue and red, green, red, blue. The algorithm

then algorithm looks for the best match between the se-

quence orders of both representations. At the point where

the best matching orders differ, a branch is introduced.

Algorithm 2 Graph merging

Require: TA, TB

SA = getSequenceOrders(TA);
SB = getSequenceOrders(TB);
for all sB ∈ SB do

cmax = 0;
for all sA ∈ SA do

c =
∑

compare(sB, sA);
if c > cmax then

cmax = c;
sA,max = sA;

nodes = 1;
for all i ∈ SA,max do

if nodes ≤ c then

mergeNodes(sA,max(i), sB(i));
else

addNode(TA, sB(i));
nodes = nodes + 1;

2.3 Learning the Switching Behavior

After creating the graph representation, the next step is

to train the classifiers. Each node has its own classifier

which is used if the node is active during reproduction. It

decides either to continue with the execution of the cur-

rent MP or to switch to a possible successor node. As

a node can have more than one outgoing transition, this

is a multiclass classification problem with the classes be-

ing neighbor nodes in the graph. Due to the graph repre-

sentation we do not have to learn a overall classification

f(x) = p with p ∈ P and x being the combined output

vector of all MPs x = (x1,x2, ...,xn)
T , but can restrict

the classes ci of each classifier to a subset Pi ⊆ P and

the data vector to the output vectors of the elements in

Pi. Restricting the number of classes increases the accu-

racy of the system as unseen transitions between MPs are

prevented. A reduction of the output vector can be seen

as intuitive dimensionality reduction, as unimportant fea-

tures used by uninvolved MPs are not considered for the

decision. Note that our approach is not requiring an as-

signment of features to MPs in general. However, our

opinion is that such local feature sets allow for a more

flexible control of the features used for a decision, due to

the dimensionality reduction.

Before introducing the classifiers themselves, we show

which data is used for the training (see Figure 4). After

the demonstrations, each transition in the acyclic graph is

linked to one TP in the sampled data. During the merg-

ing and folding process of the GSG transitions are merged

together, resulting in potentially multiple TPs for a tran-

sition. For each TP, the data points between the previous

and next TP in the overall data are taken from the training

and labeled with the MP that was active during that time.

As all transitions have the same predecessor for one clas-

sifier, the first part of the data will always have the same

labels, while the second part may differ depending on the

successor node of the transition.

8
5

,1
4
0

60 80 100
0

0.2

0.4

0.6

0.8

1

Sample

F
ea

tu
re

V
al

u
e

120 140 160
0

0.2

0.4

0.6

0.8

1

Sample

Figure 4: One classifier is created for each node in the

graph. Only the features of the previous MP and its pos-

sible successors are used for training. In this exemplary

transition from the upper sequence graph, the red MP is

not involved and hence its feature is not used.

For the classification, Support Vector Machines (SVMs)

are used. As this classifier is state of the art we focus

on the specifics that are important for our approach. For

a deeper insight the interested reader is referred to [20].

SVMs are trying to separate the feature space into hy-

perplanes and belong to the maximum margin classifiers.

Each hyperplane represents one class and data points are

assigned to classes depending on their position in the fea-

ture space. We decided to use the freely available libsvm

library [21] as implementation for the SVM and we use

radial basis functions as kernels:

k(xn,xm) = exp(−γ‖xn − xm‖2), γ > 0 (1)

For the multiclass classification, the standard SVM for-

mulation is used together with the one-versus-one con-

cept. Here, for c classes c(c − 1)/2 binary classifiers

are generated. The classification is done for each clas-

sifier and the feature vector is assigned to the class that

was chosen most frequently. The classification result for

the exemplary transition of the toy example is depicted in

Figure 5. The SVM is able to separate the feature space

into two different areas as indicated by the different back-

ground colors.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Feature Predecessor ()

F
ea

tu
re

S
u
cc

es
so

r
(

)

Figure 5: Classification result for the SVM. Every sam-

ple from the training data is plotted with colored dots in

the feature space. The colors again show the label of each

data point. The classifier finds a border separating both

classes (background). As soon as the current feature vec-

tor enters the green region during reproduction, the pre-

ceding blue MP is stopped and the succeeding green MP

gets executed. The system then switches to the classifier

linked to the successor node in the graph.

3 Results

In this section we will present the results of our work. We

evaluated our approach both in simulation and with a real

7-DOF Barrett WAM robot with an attached 4-DOF Hand.

As a scenario we chose to unscrew a light bulb. In Sec-

tion 3.1 we outline details of the experiments. The results

are then presented and discussed in Section 3.2.

3.1 Experimental Setup

For the representation of the skill we chose 7 different

MPs. The detailed task flow is illustrated in Figure 6. We

chose to unscrew the light bulb by caging it. Here, the

robot encloses the bulb with its hand and grasps it below

the point with the largest diameter. When unscrewing the

bulb (rotating the closed hand counterclockwise), a force

in upward direction is applied to the robot’s hand to en-

sure contact with the bulb.

Figure 6: Illustration of a successful unscrewing se-

quence. The robot starts in an initial position () and

first moves towards the bulb (). Then it repeats the un-

screwing movement (, , ,) until the bulb loosens

() and subsequently, the bulb is put into a bin () and

the robot returns to its initial position ().

One feature g is assigned to each MP. The feature is called

goal distance and can be directly derived from the MP’s

goal in task space xgoal:

∆ = xgoal − x (2)

g = 1− exp(−0.5(∆T
Σ

−1
∆)). (3)

Here, x ∈ R
n is the current state of the robot in task

space coordinates and Σ is a manually defined n× n di-

agonal matrix. Equation (3) is dependent on the distance

between the position of the robot and the MP’s target posi-

tion. The goal distance has several advantages over using

the Euclidean distance as a feature. First, the values are

in the range [0, 1] and no further data scaling is necessary.

In addition, the feature variation around the robot’s goal

can be shaped with the parameters of Σ. For low param-

eter values, the goal distance starts to decrease only if the

robot is already close to its goal.

In addition to the goal distances, the velocity of the hand

is used as feature to check if the light bulb is loose. To

avoid the velocity dominating the other features, it is

scaled by subtracting the mean, dividing by the standard

deviation and then shifted by 0.5 and clipped to [0, 1].
The scaling is done automatically for the complete data

used for training the classifiers. Given the goal distances

and the velocity of the hand, the overall feature dimen-

sion is 8 for 7 MPs.

As a kinesthetic teaching is not possible in simulation,

demonstrations were performed by executing the MPs in

a predefined order using a state machine. For modeling

variations in the switching behavior, the transition points

were chosen randomly from a certain range. For example

when going down to the bulb, the succeeding MP could be

activated if the goal distance of the MP was in the range

[0, 0.1]. The exact transition point was chosen randomly

from this range every time the MP started its execution

and hence possible transition points were for example

0.02 and 0.09 for two different demonstrations. The in-

tention of this demonstration was to create a switching

behavior which is similar to that of a human teacher.

For the kinesthetic teaching, we activated the gravity

compensation mode of the robot and executed the task by

guiding its arm. Switches between MPs were indicated by

pressing a key every time we considered a movement as

complete. We also chose to activate the opening and clos-

ing of the hand by pressing a key rather than using com-

pliant fingers in order not to influence the force torque

sensor at the wrist. The labeling was then done based on

the generated switching points.

3.2 Results and Discussion

We evaluated our approach with data from up to 3 demon-

strations. For all demonstrations, our approach was able

to find the correct GSG of the skill which is shown in Fig-

ure 7.

Initial

Figure 7: Graph representations of the light bulb task.

Figure 8 shows the classification recall of the simulation

and the experiments with the real Barrett WAM robot. As

reference a single SVM was used, trained with the com-

plete data of the demonstrations (no sequence graph was

used). The classifier was solely active during the entire

reproduction and could choose every MP at every point in

time. Therefore all MPs were involved in the decision and

no dimensionality reduction could be used.

1 2 3

90.0

92.0

94.0

96.0

Number of Demonstrations

R
ec

al
l

[%
]

Ref-Sim SVM-Sim Ref-Rob SVM-Rob

Figure 8: Classification recall in % based on 1–3 demon-

strations for simulation (-Sim) and the experiments with

the real Barrett WAM robot (-Rob). The reference clas-

sifier (Ref-) is a SVM which was created without using a

sequence graph.

The results for the reproduction of the movements are

depicted in Figure 9. The figure outlines the percent-

age of successfully reproduced transitions between MPs

compared to the overall transitions that were necessary to

perform the task. If an incorrect movement was chosen or

the robot got stuck the transition was marked as faulty. In

that case the transition was blocked and triggered manu-

ally in the next trial, so that also all succeeding transitions

could be tested. First tests showed that the reference clas-

sifier did not provide useful results for the experiments on

the real robot. In order to not harm the robot we therefore

skipped it for the evaluation.

1 2 3

60.0

80.0

100.0

Number of Demonstrations

R
ep

ro
d
u
ct

io
n

R
at

e
[%

]

Ref-Sim SVM-Sim Ref-Rob

Figure 9: Reproduction results in % of different demon-

strations. Shown are the successfully performed MP

switches compared to the overall switches. The refer-

ence classifier did not produce any useful results and is

therefore not shown here.

The presented results show, that our system is able to re-

produce the demonstrated manipulation skill. Only two

trials were necessary to perform the skill properly both in

simulation and with the real robot. The fixed amount of

seen unscrewing repetitions were generalized to an arbi-

trary number and the system was able to recognize when

the bulb was loose. It is notable here that of course not

every demonstration works for 100% as indicated by the

results. Instead, the success also relies on the teacher.

For example, attention has to be paid on the velocity of

the robot’s hand. If the arm of the robot is moved too

fast when the light bulb gets loose, the actual velocity

reached during reproduction is not matching the expecta-

tions. The reason is that the expected velocity is learned

from the demonstrations, while the reached velocity is

a consequence of the applied force in upward direction

during reproduction. This constant force is part of the MP

and predefined in our system. The potential misbehav-

ior therefore is not a classification error but caused by the

general drawback that occurs with predefined MPs.

4 Conclusion and Future Work

In this paper, we showed how a sequential manipulation

skill can be learned from kinesthetic demonstrations.

A skill is represented in a graph structure and the switch-

ing behavior between basic movements is treated as clas-

sification problem. For the classification, SVMs were

used. We showed how the observed sequence order of

the demonstrations can be incorporated into the graph

structure, leading to an intuitive class and dimensional-

ity reduction of the classifiers. Our approach was vali-

dated with an experiment in which the robot unscrews a

light bulb, both in simulation and with a real Barrett WAM

robot.

In future work some simplifications made in this paper

will be relaxed. We aim at learning more complex skills

that require co-articulation and parallel execution of MPs.

Therefore we have to synchronize concurrently active

MPs which for example control two different end effec-

tors. Additionally, we plan to use a segmentation algo-

rithm instead of labeling the data manually.

References

[1] B. D. Argall, S. Chernova, M. Veloso, and

B. Browning, “A survey of robot learning from

demonstration,” Robot. Auton. Syst., vol. 57, no. 5,

pp. 469–483, 2009.

[2] C. Nehaniv and K. Dautenhahn, Imitation in ani-

mals and artifacts, ch. The Correspondence Prob-

lem, pp. 42–61. MIT Press, 2002.

[3] T. Flash and B. Hochner, “Motor primitives in verte-

brates and invertebrates,” Current Opinion in Neu-

robiology, vol. 15, no. 6, pp. 660 – 666, 2005.

[4] S. Schaal, S. Kotosaka, and D. Sternad, “Nonlin-

ear dynamical systems as movement primitives,” in

IEEE-RAS Int. Conf. Humanoid Robots, 2000.

[5] J. Peters, “Machine learning of motor skills for

robotics,” USC Technical Report, pp. 05–867.

[6] V. Pavlovic, J. M. Rehg, and J. Maccormick,

“Learning switching linear models of human mo-

tion,” pp. 981–987, 2000.

[7] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Naka-

mura, “Incremental learning of full body motion

primitives and their sequencing through human mo-

tion observation,” Int. J. Rob. Res., vol. 31, no. 3,

pp. 330–345, 2012.

[8] L. Riano and T. M. McGinnity, “Automatically

composing and parameterizing skills by evolving fi-

nite state automata,” Robot. Auton. Syst., vol. 60,

no. 4, pp. 639–650, 2012.

[9] T. Luksch, M. Gienger, M. Muehlig, and T. Yoshi-

ike, “Adaptive movement sequences and predic-

tive decisions based on hierarchical dynamical sys-

tems,” in IEEE/RSJ Int. Conf. Intelligent Robots and

Systems, 2012.

[10] P. Pastor, M. Kalakrishnan, L. Righetti, L. Righetti,

and S. Schaal, “Towards Associative Skill Mem-

ories,” in IEEE-RAS Int. Conf. Humanoid Robots,

2012.

[11] S. Calinon, F. D’halluin, E. Sauser, D. Caldwell,

and A. Billard, “Learning and reproduction of ges-

tures by imitation,” Robotics Automation Magazine,

IEEE, vol. 17, no. 2, pp. 44–54, 2010.

[12] A. Billard, S. Calinon, and F. Guenter, “Discrimi-

native and adaptive imitation in uni-manual and bi-

manual tasks,” Robotics and Autonomous Systems,

vol. 54, no. 5, pp. 370–384, 2006.

[13] J. Ernesti, L. Righetti, M. Do, T. Asfour, and

S. Schaal, “Encoding of periodic and their transient

motions by a single dynamic movement primitive,”

in IEEE-RAS Int. Conf. Humanoid Robots, 2012.

[14] S. Calinon, F. Guenter, and A. Billard, “On learning,

representing, and generalizing a task in a humanoid

robot,” IEEE Trans. Systems, Man, and Cybernet-

ics, vol. 37, no. 2, pp. 286–298, 2007.

[15] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-

line motion synthesis and adaptation using a trajec-

tory database,” Robotics and Autonomous Systems,

vol. 60, no. 10, pp. 1327 – 1339, 2012.

[16] S. Niekum, S. Chitta, A. Barto, B. Marthi, and

S. Osentoski, “Incremental semantically grounded

learning from demonstration,” in Robotics Science

and Systems, 2013.

[17] S. Ekvall and D. Kragic, “Learning task models

from multiple human demonstrations,” in Int. Sym-

posium Robot and Human Interactive Communica-

tion, 2006.

[18] M. N. Nicolescu and M. J. Mataric, “Natural meth-

ods for robot task learning: Instructive demon-

strations, generalization and practice,” in Int. Joint

Conf. Autonomous Agents and Multi-Agent Systems,

2003.

[19] U. Thomas, B. Finkemeyer, T. Kröger, and F. M.

Wahl, “Error-tolerant execution of complex robot

tasks based on skill primitives,” in IEEE/RSJ Int.

Conf. Robotics and Automation, 2003.

[20] C. M. Bishop, Pattern Recognition and Machine

Learning. Springer-Verlag New York, Inc., 2006.

[21] C.-C. Chang and C.-J. Lin, “Libsvm: A library for

support vector machines,” ACM Transactions on In-

telligent Systems and Technology, vol. 2, pp. 1–27,

2011.

	Introduction
	Problem Statement
	Related Work

	Learning Sequential Skills
	Representing Skills with a Sequence Graph
	Learning the Skill Representation
	Learning the Switching Behavior

	Results
	Experimental Setup
	Results and Discussion

	Conclusion and Future Work

