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Abstract— Although human beings see and move slower than
table tennis or baseball robots, they manage to outperformuigch
robot systems. One important aspect of this better performace
is the human movement generation. In this paper, we study
trajectory generation for table tennis from a biomimetic point
of view. Our focus lies on generating efficient stroke movenrgs
capable of mastering variations in the environmental condions,
such as changing ball speed, spin and position. We study tabl
tennis from a human motor control point of view. To make
headway towards this goal, we construct a trajectory genetar
for a single stroke using the discrete movement stages hygasis
and the virtual hitting point hypothesis to create a model
that produces a human-like stroke movement. We verify the
functionality of the trajectory generator for a single forehand
stroke both in a simulation and using a real Barrett WAM ™ .

. INTRODUCTION

model [10]. We end up with a method that works sufficiently
well in simulation and on a real Barrett WAM.

In this paper, we will proceed as follows. In Section lll,
we present all relevant knowledge on modeling a table tennis
stroke based on biological hypotheses such that we are able
to obtain a trajectory of a table tennis stroke in Section IV.
In Section V, we present the results of the simulation and of
our real setup.

Il. LITERATURE REVIEW

Work on robot table tennis started with the robot table
tennis competitions initiated by Billingsley in 1983 [1]e®
eral early systems were presented by Knight & Lowery [3],
Hartley [4], Hashimoto [5] and others. For this early work,
the major bottleneck was fast real-time vision. An impottan

Table tennis has long fascinated roboticists as a partigreakthrough was achieved in 1988 by Andersson at AT&T
ularly difficult task. The main work on robot table tennisgg|| |aboratories who presented the first robot ping pong

started in 1983 [1] and ended in 1993 [2]-{6], but singlgayer capable of playing against humans and machines [2].
groups continued work until today [7]-[9] (see Section il fo Andersson and his team employed the simplified robot table
a more detailed review). These early approaches used sm@iinis rules suggested by BillingsleyAndersson used a
engineering to overcome inherent problems like movemeRigh-speed video system and a six degree of freedom (DoF)
generation, orientation of the racket and vision in an humgpypma 260 arm with a0.45m long stick mounted on it. In
inhabited environment. In contrast to these approaches, Wg93, the last robot table tennis competitions took plack an
use an anthropomorphic robot arm with seven degrees @hs won by Fassler et al. [6] of the Swiss Federal Institute
freedoms (DoFs) and concentrate on generating smoagf Technology. Although the competitions ceded to exist,
movements that properly distribute the forces over the dithe problem was by no means solved but the current limits
ferent DoFs. Therefore, we employ a biomimetic approaclyere met in terms of robot hardware, algorithms and vision
for trajectory generation and movement adaptation. equipment.

Humans perform complex skills relying on little feedback Nevertheless, interest in robot table tennis did not wane
with long latencies, have strong limits on their possible-ex and a series of groups continued work on robot table tennis.
cution, and have chronically inaccurate sensory inforomati Acosta et al. [9] constructed a low-cost robot showing that
on largely unmodeled environments. Table tennis requir%lssetup with two paddles can already suffice for playing if
fast and accurate movements to achieve a decent playifip ball is just reflected at the correct angle by a stationary
performance. Understanding how humans perform a compl@¥ddie. Miyazaki et al. [7], [8] were able to show that a slow
task such as table tennis can yield essential knowledge f@jur DoF robot system consisting of two linear axes and a
skill execution and learning in robotics. two DoF pan-tilt unit suffices if the right predictive mapg

In this project, we construct a trajectory generator fofdab gre |earned.
tennis striking movements based on known hypotheses ona|| systems were tailored for the table tennis task and
human motor control in table tennis. Our goal is to get @elied heavily on high-gain feedback, over-powered motors
step closer to Understanding which basic bUIIdIng blocles a(no Saturation), linear axes (easy to Contro|), and ||gbtght
needed for generic robot skill execution systems. We descristryctures (no torque saturation, little moving inertiahey
the construction of a robot ping pong player that is capable Quere engineered in such a way that they could execute any
returning a ball on an International Table Tennis Fedematiostraight movement towards the ball at a rapid pace with the
(ITTF) standard sized table served by a ball cannon. Weght approach angle. The important problem of generating
focus particularly on modeling the arm trajectories ikl smooth movements that properly distribute the forces over
movements based on human table tennis data using a st@§e different DoFs of the arm was often avoided. In our setup,
the task is more difficult as the robot does not have linear
axes but has to deal with large inertia; the wrist adds roughl
2.5 kg weight at the elbow. Thus, we have severe constraints
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(a) Awaiting Stage (c) Hitting Stage (d) Finishing Stage

Fig. 1. This figure illustrates the four movement stages ahRaantsoa et al. [10] recorded in a VICBNmotion capture system for verification during
our study. The red arrow shows the movement of the ball in tres@ and the blue arrow indicates the movement of the racket.

in the joint velocities (the maximal velocity is approxirabt We have tested and verified the stages suggested by
10rad/s) and accelerations. Furthermore, our vision systelRamanantsoa et al. [10] in a VICON motion capture setup
operates in a cluttered environment. for two intermediate players where each of the stages can be

observed distinctively (see Figure 1).
IIl. M ODELING HUMAN STRIKING MOVEMENT IN
TABLE TENNIS B. Movement Selection and Goal Determination

In this section, we discuss modeling of table tennis from a As humans appear to rely on motor programs [12], it is
racket sports’ perspective. In particular, we focus on s®pa also plausible that pre-structured movement commands are
ble movement stages, movement selection, parameterizatiemployed for each of the four stages. These motor programs
and generation. At the end of each of these sections, weed to be chosen based upon the environmental stimuli at
will outline which computational concepts arise from thehe beginning of each stage.

biological hypotheses. Motor programs determine the order and timing of the
muscle contractions and, by doing so, define the shape of the
A. Movement Stages during a Stroke action produced. Sensory information can modify motor pro-

Table tennis exhibits a very regular, modular structur@ms to generate rapid corrections in the case of changing

studied by Ramanantsoa and Durey [10], [11]. They analyzﬁvironmer!tall demands as found in t_ablg tennis by Bootsma
a top player and proposed a spatial adjustment with respéttd van Wiering [13]. This observation is strengthened by
to certain ball events, i.e., bouncing, net crossing araketr (€ supportive evidence of Tildesley and Whiting [14], who
According to the hypothesis of Ramanantsoa, the followin@ho"_"ed that expert table tennis players exhibit a congisten
four stages can be distinguished during expert players’ p|§patlal and temporal movement pattern. They concluded that

and, to make them more understandable, we labeled thé'hprofessional player chooses a movement program for which
according to their function: the execution time is known from his movement repertoire

. and decides when to initiate the drive. This hypothesis is
Awaiting Stage. The ball moves towards the opponent thmown as operational timing hypothesis

hits it back towards the net. The racket is moving downwards. The problem of which information is used in order to de-

Atthe end of this stage the racket will be in a plane paralleclide when to initiate the movement has not yet been solved.
to the table surface.

It is likely that humans use the so-call¢idhe to contact
Preparation Stage.The ball heads towards the player, hagynich is the time until an object reaches the observer, to
already passed the net and will hit the table during thisestagcontrol the timing. Hence, the operational timing hypot&es
The racket moves backwards in order to prepare the strokgplies that humans have to initiate the chosen movement
The player chooses a hitting point where he plans to hit thgogram when the time to contact reaches a critical value.
ball to which we refer as the virtual hitting point. In our biomimetic player, we represent movement pro-
Hitting Stage. The ball moves towards the virtual hitting grams using splines. The hitting point is adapted according
point where the player intercept it. The racket moves towardo the incoming ball and the desired return. All other start
the virtual hitting point until it hits the ball in a circular and end positions, velocities and accelerations of theestag
movement. For expert players the duration of this stage &nd the duration of the movements are fixed.

constant and lasts approximatey ms.

Finishing Stage. After having been hit, the ball is on the C: Movement Generation

return path to the opponent while the racket moves upwardsNext, we need to discuss how the different strokes are
to an end position. generated. There are infinitely many ways to generate racket
trajectories and, due to the redundancy of the arm, there

1|n contrast to human plng pong rUIeS, the table is dhﬁ/m wide and are also numerous dlﬁ:erent arm postures to reallze the
2m long. The net has a height 6£25m. Wire frames were attached at

each end of the table and the net. For a valid shot, the baltchpass all SaMme te_isk-sp_ac_e trajectory 'n joint-space. In order to f'nd
frames. As a result, the maximum ball speed is slowed dowiDtm/s. generative principles underlying the movement generation



neuroscientists often turn to optimal control [15]. One ap- Movement initiation follows the presented movement
proach is the use of cost functions which allow the comstages and is triggered when the tirgg of the predicted ball
putation of trajectory formation for arm movements. Mosintersecting the virtual hitting plane is less than a thoégh
studies focus primarily on reaching and pointing movementBhis step requires the system to predict when the ball isggoin
where one can observe a bell-shape velocity curve andt@reach the virtual hitting plane. The current hitting tinen
clear relationship between movement duration and amplye determined by predicting the trajectory of the ball using
tude. However, this relationship does not hold for strikinghe dynamics model of the ball described in Section IV-B.
sports. Cruse et al. [16] suggested a cost function for tHeollowing the suggestion in [17] that some online adaptatio
control of the human arm movement based on the comfort of the movement can take place, we update the virtual
the posture. For each joint, the cost is induced by proximitkitting point and subsequently the movement generation
to a comfort posture in joint-space, i.e., the cost is miniifna for the hitting and finishing stage. For the determination
the joint angles are the same as for the comfort posture anfl the movement program, we rely upon a spline-based
increases correspondingly to the distance between comfoepresentation for encoding the trajectory. More detaiés a
posture and joint position. For movement generation, thigiven in Section IV-E. An overview of the resulting algorith
cost is minimized. We employ this cost function to selectan be found in Algorithm 1.

a comfortable joint configuration at the hitting point (se

Section IV-C for details). . Dynamics Model of the Table Tennis Ball

To predict the position and velocity of the ball at time

IV. A BIOLOGICALLY-INSPIRED TRAJECTORY tj+1 based on the ones at tintg, we have to model the

GENERATOR FORTABLE TENNIS STROKES aerodynamics of the ball, and the physics of a ball's bounce
(?I);f the table. To model the ballistic flight of the ball we
Iaave to consider air drag, gravity and spin. As the latter is
computational realization suitable for real-time exewuiti hard fo observe from da_ta, our model currently neglects th_e
on a robot. To achieve this aim, we proceed as followSPin. For the table tennis ball, we can assume that the air
firstly, we discuss all required co}nponents in an overvievxgrqg is proportiqnal to th_e square of the veloc_:ity of the ball
Subsequently, we discuss the details of the dynamics mo ing symplectlc_; El.JIer mtegratlon, we can implement the
for table tennis, the computation of the goal parametess, t ollowing model in discrete time form
movement generation, the vision system and the filtering of ajr1 =g — C|vjllvy,
the vision information.

To evaluate and use the behavioral model presented
Section l1ll, we replace the data-driven observations by

Vit1 = Vj + aj+1At, (1)
A. General Assumptions Pji1 = P; + V1AL,

As outlined in Section IlI-A, we assume the movementherea denotes the acceleration vector of the baltlenotes
stages of the model by Ramanantsoa et al. [10] and usefg velocity of the ballp denotes the position of the ball,
finite state automaton to represent this model. In order ® iS the gravity vector,At is the time differenceC =
realize each of these four stages, the system has to deteep4d/(2m), ¢, is the drag coefficientp is the density of
the ball and determine its positiag,. Due to noise in the the air, A is the size of the ball surface anmd is the mass
vision processing, the system needs to filter this inforamati Of the table tennis ball.

(see Section IV-F). For the bouncing behavior of the ball on the table, we

To generate the arm trajectories, we have to determine tAgSume a velocity change indirection only. This change
constraints for the movements of each joint of the arm in eadR VeloCity v. = —erv. is determined by the coefficient of
stage. While desired final joint configurations suffice fag th restitutioner-.
awaiFing, preparation and finishing stages, thg hittingesta Determining the Goal Parameters
requires a well-chosen movement goal which is the hardest

to realize. The system has to first choose a priat. on the After determining the virtual hitting point, the system can

court of the opponent where the ball needs to be ret&rneéreely choose the height,.; at W.h.'Ch the returning ball
sses the net as well as the positiepsy, where the ball

Secondly, we have to determine the intersection point Of;, -

the ball and the racket, which specify the virtual hittingWIII bounce on t_hg opponents .courts. T@ax!s Is along the

point xn,. The hitting point is determined by the location"€t and t_her-aX|s s aligned W'th the long side of the taple.

where the ball trajectory intersects a virtual hitting @an The ch0|c_e of _these th_ree variables pelon_gs to the higher
4§vel functionality (and is not covered in this model as we

the hitting area of the robot. Based on the choice of the { att ‘1 del strateqies based i
two points, the necessary batting position, orientatiod an 0 not aitempt 1o model sirategies based on an opponent),

velocity of the racket are chosen as goal parameters for tﬁrée (ljnstteao! drzi\r/]v themlfrom a d|tstr|but|or;]of pl?u?.'blf vaJuest
hitting movement. More details on the involved computagion 0 determine the goal parameters, we have 1o Tirst compute
are given in Section IV-C the desired outgoing velocity vectaer of the ball which

corresponds to the velocity of the ball after the impact with
2Humans choose this point as part of a higher level strategylate, we the r_aCket' D|r_ectly from this _vector, we can determine the
choose them ad-hoc and not conditioned on the opponent. required velocity and orientation of the racket.



a) Desired Outgoing VectorBased on the dynamics whereeyr denotes the coefficient of restitution of the racket,
model derived in Section IV-B, we obtain 5 nonlinear equavr the speed of the racket along its normal andand i,
tions with 5 unknowns, i.e., the time until the ball reacheslenotes the components ofandi, respectively, which are
the opponents court, the time until the ball reaches the nparallel to the racket normal. This equation can be solved

and the desired outgoing vector (3 components) for v which yields the desired racket velocity.
f(07 Xhp, tnet) = Xnet, (2)
f(0,Xnp, trab) = Xtable, (3)

D. Movement Parameters

Wherexnet = [xnet; Znet]Ti Xtable = [zb; Yo, Zb]T! Tnet is the

z-position for the net and, is the height of the table. Since  To perform a hitting movement to return an incoming ball,

these equations are nonlinear in the variables of interesige have to generate the movement for each of the four

we have to solve the problem numerically. Therefore, wetages. As stated in Section IV-A, we determine the start

use a globally convergent solver for nonlinear equatioand end position, velocity and acceleration for each of the

systems, which combines the Newton-Raphson update witbur stages. The start and end position for the awaiting and

a modification for global convergence [18]. preparation stage as well as the start and end configuration
b) Racket OrientationThe orientation of the endeffec- of the finishing and hitting stage, respectively, are fixed an

tor is specified as a rotation that transforms the normabvectchosen to produce a hitting movement similar as exhibited by

n. to the desired normal vecter.q. To definen.q, we have humans. The corresponding joint velocities and accetarati

to compute the normal direction of the rackey that results  are set to zero. The start and end position and velocity of

in the desired outgoing vectar for the predicted velocity the finishing and hitting stage, respectively, are deteeahin

of the balli at the hitting point by the joint configuration of the hitting point described abo
o—1i and is determined for each stroke individually. The duratio
rd = lo—1i|’ 4)  of each stage (i-etas, tps, ths, tts) are chosen such that the

Irobot is able to execute the movement. The duration of the

Herei is the velocity vector of the incoming ball at the virtual .. : i . :
éHttlng stagetys is equal to the estimated time to hi,.

hitting point before impact. Note that we assume only a spe
changeo — i in the normal directiom,q. The rotation that

transformsn, to n.q is defined in terms of quaternions by
E. Movement Generation

Ged = (rdQyrot, (5)
where gyt iS the quaternion that describes the rota- We plan our trajectory in joint space, where high velocity
tion from the racket to the endeffector angly = mMovements can be executed more reliably than in workspace.

(cos (7/2), usin (v/2)), with v = nTn,q/(||ne|||n.al|) and ~ For the execution of the movements, we need a representa-
u = n, x n,q/||ne x n.ql|, is the quaternion that defines thetion to obtain positiorf(t), velocity 8(¢) and accelerations
transformation of the normal of the end-effeciar to the 6(t) of the joints of the manipulator at each point in tirhe
desired racket normal,q. so that it can be executed with an inverse dynamics based
As there exist infinitely many racket orientations that haveontroller. We used fifth order polynomials = >, aut!,
the same racket normal, we need to determine the finahere ay = [ako, k1, k2, s, aka, 5] T are adjustable
orientation depending on a preferred end-effector pasitio parameters ankl denotes the DoF, to represent the trajectory
The resulting quaternion of the end-effecir is determined of all stages. Such polynomials are the minimal sufficient
by the rotation abouh,q. For this purpose, the orientation representation, generate smooth trajectories and carahe ev
of the end-effector.q is rotated about the normal,q of ated quickly as well as easily. Applying the four stage model
the racket. The corresponding join values, velocities anof Ramanantsoa et al. [10], we can determine four different
accelerations are then computed using inverse kinematigplines interpolating between the initial and final positio
The inverse kinematics problem for the redundant DoFs s the trajectory of the hitting and finishing state depenus o
solved numerically by minimizing the distance to the corhforthe hitting point, trajectories have to be calculated jyiat
posture in joint space while finding the racket position anthe beginning of the hitting stage and have to be recalallate
orientation which coincides with the virtual hitting poisit,. ~ every time the virtual hitting point is updated.

The orientation whose corresponding joint configuratip The boundary conditions for the joint positions, veloditie
yields the minimum distance to the comfort posit®n.. is  and accelerations at the time pointandt; are given by
used as a desired racket orientation.

¢) Required Racket VelocitjNext, we have to calculate . "
the velocity vector for the end-effector at the time of the Or(ti) = pi Ok(ti) = vi O(ti) = ai (7)
ball’'s interception. We can describe the relation betwéen t Or(ty) = py O (ty) = vy Or(t;) =ay (8)
components of the incoming and outgoing velocity vector

parallel to the racket norm using wherep;, v;, a;, pr, vy anday are the joint angles, velocities

0| — v = er(—1i| +v), (6) and accelerations at the time poirtisandt;, respectively.



Algorithm 1 Table Tennis Algorithm

Initialize: switch to AwaitingStage

repeat

Extract ball positionk;
EK-Filter: x, — x;,%;
EK-Prediction:x;, X; — thp, Xhp, Xnhp

{Switch Stagg

if FinishingStageand MovementEnds

Switch to AwaitingStage

Computeay, = M~1(0, t,5)b2® for each DoFk
else if AwaitingStageand ¢, < tas + ths

Switch to PreparationStage

Computeay, = M ™1 (0, t,5)b}* for each DoFk
else if PreparationStag@nd t,, < tis
Switch to HittingStage

else if HittingStageand BallHit
Switch to FinishingStage

Computeay, = M~ (0, t )bl for each DoFk

end if

{Update Striking Motioh

if HittingStage

Solve with Newton-Raphson fas using

f(oa th7 tnet) = Xnet
f(oa th7 ttable) = Xtable

Determine joint configuration at hitting point

v =0 —i—ER’L'H/(l +ER)
nyq = o —i/(llo—if)

Ged = qrdQyrot
Determine optimal rotation about,q by

end if

{Executing Movemeht
for each DoFk do
919 = 215:1 Oékltl

end for

Execute @, 6, ) with Inverse Dynamics Control.
until user stops program

Oopt = argming, ||@com — Onp|
with Inverse KinematicSxnyp, ged, v — np
Computeay, = M~1(0, tys)b}* for each DoFk

With the linear equation systefila = b given by

Lottt
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0 0 2 6t 1262 2083
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Fig. 2. This figure shows the movement of the racket and thieobathe
real robot for a successful striking movement. The hittiognpis indicated
by the black triangle.

F. Filtering the Vision Information

The vision system consists of a stereo camera setup
with two Prosilica GE640C Gigabit Ethernet cameras and a
GPU-based 60 Hz blob detection. The vision informatign
contains the 3D position coordinates of the detected blob. T
filter x;, and to track the table tennis ball, we use an extended
Kalman filter (EKF) [19]. The system equations used for the
EKF are given in Equation (1).

V. EVALUATIONS

In this section, we demonstrate that the biomimetic tra-
jectory generator model can be used effectively for robot
table tennis in a ball cannon setup. For this purpose, we will
first examine the resulting setup in a simulation of the robot
table tennis setup. We discuss the accuracy of the system in
striking a ball such that it hits a desired point. As second
evaluation, we implement the model on a real robot and
demonstrate that it can successfully return balls. We eyrgolo
Barrett WAM™ arm with seven DoFs that is capable of high
speed motion. A racket with6cm in diameter is attached
to the end-effector. The robot arm interacts with a standard
sized table and a table tennis ball according to the ITTF
rules. The ball is served randomly by a ball cannon to the
forehand of the robot. As a result, the balls passes the'sobot
end of the table in an area of approximatéiy?. This area
serves as the virtual plane.

A. Evaluation in Simulation

We employed the SL framework [20] to create a sim-
ulation of an anthropomorphic robot arm. To create the
environment, we used a simplified model of the flight and
bouncing behavior of the ball as discussed in Section V-
B. We model the noise and delay of the vision system but
have not yet included spin. The coefficients of restitutibn o
both racket-ball and ball-table interactions were detaedi
experimentally.

The table tennis system is capable of returning an in-
coming volley to the opponents court which was served
by a ball cannon at random times and to arbitrarily chosen
positions. In simulations where a ball cannon served thie bal
10,000 times to a random position in the work-space of the
robot, the system was able to return 98.5% of the balls. In
85% of the trials the ball was returned successfully to the

we can solve foi by Gauss-Seidel elimination efficiently. opponent court. The mean deviation of the position of the



(a) Awaiting Stage

(b) Preparation Stage

(c) Hitting Stage (d) Finishing Stage

Fig. 3. The figure shows the different stages, matching ti$egure 1, but performed by the real robot.

racket mid point to the ball at the moment of contact is
1.8cm. This result could be further improved by optimizing |,
the determination of the outgoing vector and the trajectory2]
generation in joint space. -
B. Application on a Barrett WAW "

Subsequently, we successfully transferred the setup onto a
real Barrett WAM robot equipped with two partially overlap- 5
ping stereo camera pairs. We use the exact same biomimetic
trajectory generator as in the simulated setup. As thenarisi
differences were small, we will only focus on these in this®
discussion. The extended Kalman filter, based on the ballist
flight of a point mass with estimated restitution factoracks
the ball well. However, the prediction of the virtual hitgin
point and time is less accurate than in simulation due to
the neglected spin and inaccuracies in the vision systenis]
Hence, these predictions need to be updated frequently and
the trajectory generation is adapted. As a result, the robqy
manages to hit the ball. See Figure 3 for snapshots of the
movement and Figure 2 for the trajectories of the racket arﬁio]
the ball of the real system.

(7]

VI. CONCLUSION [

Using all knowledge on human table tennis available tc[)
us, we have formed a trajectory generator for striking mové13l
ments. This model is realized in a computational form using
analytical counterparts. We show that the resulting model ¢ [14]
be used as an explicit policy for returning incoming table
tennis balls to a desired point of the opponent’s court i)
simulation as well as on the real of a redundant seven Dgts]
Barrett WAM™ robot. Our setup, with an anthropomorphic
arm and a cluttered environment, is significantly more chal;,
lenging than the tailored ones of previous robot table &®nni
players. The biomimetic model with its four stages of the
table tennis stroke and the goal parameterization usirigalir (18]
hitting points and pre-shaping of the orientation has pnove
to be successful in operation. [19]

Our future work will concentrate on achieving a higher,q
precision in returning the ball to a desired point on thedabl
Furthermore, we plan to replace the spline based trajectoR}
for movement generation by using motor primitives [21] for
each of the four stages suggested by Ramanantsoa.
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