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Abstract— Although human beings see and move slower than
table tennis or baseball robots, they manage to outperform such
robot systems. One important aspect of this better performance
is the human movement generation. In this paper, we study
trajectory generation for table tennis from a biomimetic point
of view. Our focus lies on generating efficient stroke movements
capable of mastering variations in the environmental conditions,
such as changing ball speed, spin and position. We study table
tennis from a human motor control point of view. To make
headway towards this goal, we construct a trajectory generator
for a single stroke using the discrete movement stages hypothesis
and the virtual hitting point hypothesis to create a model
that produces a human-like stroke movement. We verify the
functionality of the trajectory generator for a single forehand
stroke both in a simulation and using a real Barrett WAMTM .

I. INTRODUCTION

Table tennis has long fascinated roboticists as a partic-
ularly difficult task. The main work on robot table tennis
started in 1983 [1] and ended in 1993 [2]–[6], but single
groups continued work until today [7]–[9] (see Section II for
a more detailed review). These early approaches used smart
engineering to overcome inherent problems like movement
generation, orientation of the racket and vision in an human
inhabited environment. In contrast to these approaches, we
use an anthropomorphic robot arm with seven degrees of
freedoms (DoFs) and concentrate on generating smooth
movements that properly distribute the forces over the dif-
ferent DoFs. Therefore, we employ a biomimetic approach
for trajectory generation and movement adaptation.

Humans perform complex skills relying on little feedback
with long latencies, have strong limits on their possible exe-
cution, and have chronically inaccurate sensory information
on largely unmodeled environments. Table tennis requires
fast and accurate movements to achieve a decent playing
performance. Understanding how humans perform a complex
task such as table tennis can yield essential knowledge for
skill execution and learning in robotics.

In this project, we construct a trajectory generator for table
tennis striking movements based on known hypotheses on
human motor control in table tennis. Our goal is to get a
step closer to understanding which basic building blocks are
needed for generic robot skill execution systems. We describe
the construction of a robot ping pong player that is capable of
returning a ball on an International Table Tennis Federation
(ITTF) standard sized table served by a ball cannon. We
focus particularly on modeling the arm trajectories in striking
movements based on human table tennis data using a stage
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model [10]. We end up with a method that works sufficiently
well in simulation and on a real Barrett WAMTM .

In this paper, we will proceed as follows. In Section III,
we present all relevant knowledge on modeling a table tennis
stroke based on biological hypotheses such that we are able
to obtain a trajectory of a table tennis stroke in Section IV.
In Section V, we present the results of the simulation and of
our real setup.

II. L ITERATURE REVIEW

Work on robot table tennis started with the robot table
tennis competitions initiated by Billingsley in 1983 [1]. Sev-
eral early systems were presented by Knight & Lowery [3],
Hartley [4], Hashimoto [5] and others. For this early work,
the major bottleneck was fast real-time vision. An important
breakthrough was achieved in 1988 by Andersson at AT&T
Bell Laboratories who presented the first robot ping pong
player capable of playing against humans and machines [2].
Andersson and his team employed the simplified robot table
tennis rules suggested by Billingsley1. Andersson used a
high-speed video system and a six degree of freedom (DoF)
PUMA 260 arm with a0.45 m long stick mounted on it. In
1993, the last robot table tennis competitions took place and
was won by Fässler et al. [6] of the Swiss Federal Institute
of Technology. Although the competitions ceded to exist,
the problem was by no means solved but the current limits
were met in terms of robot hardware, algorithms and vision
equipment.

Nevertheless, interest in robot table tennis did not wane
and a series of groups continued work on robot table tennis.
Acosta et al. [9] constructed a low-cost robot showing that
a setup with two paddles can already suffice for playing if
the ball is just reflected at the correct angle by a stationary
paddle. Miyazaki et al. [7], [8] were able to show that a slow
four DoF robot system consisting of two linear axes and a
two DoF pan-tilt unit suffices if the right predictive mappings
are learned.

All systems were tailored for the table tennis task and
relied heavily on high-gain feedback, over-powered motors
(no saturation), linear axes (easy to control), and light-weight
structures (no torque saturation, little moving inertia).They
were engineered in such a way that they could execute any
straight movement towards the ball at a rapid pace with the
right approach angle. The important problem of generating
smooth movements that properly distribute the forces over
the different DoFs of the arm was often avoided. In our setup,
the task is more difficult as the robot does not have linear
axes but has to deal with large inertia; the wrist adds roughly
2.5 kg weight at the elbow. Thus, we have severe constraints
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Fig. 1. This figure illustrates the four movement stages of Ramanantsoa et al. [10] recorded in a VICONTM motion capture system for verification during
our study. The red arrow shows the movement of the ball in the phase and the blue arrow indicates the movement of the racket.

in the joint velocities (the maximal velocity is approximately
10 rad/s) and accelerations. Furthermore, our vision system
operates in a cluttered environment.

III. M ODELING HUMAN STRIKING MOVEMENT IN

TABLE TENNIS

In this section, we discuss modeling of table tennis from a
racket sports’ perspective. In particular, we focus on separa-
ble movement stages, movement selection, parameterization,
and generation. At the end of each of these sections, we
will outline which computational concepts arise from the
biological hypotheses.

A. Movement Stages during a Stroke

Table tennis exhibits a very regular, modular structure
studied by Ramanantsoa and Durey [10], [11]. They analyzed
a top player and proposed a spatial adjustment with respect
to certain ball events, i.e., bouncing, net crossing and stroke.
According to the hypothesis of Ramanantsoa, the following
four stages can be distinguished during expert players’ play
and, to make them more understandable, we labeled them
according to their function:

Awaiting Stage.The ball moves towards the opponent who
hits it back towards the net. The racket is moving downwards.
At the end of this stage the racket will be in a plane parallel
to the table surface.

Preparation Stage.The ball heads towards the player, has
already passed the net and will hit the table during this stage.
The racket moves backwards in order to prepare the stroke.
The player chooses a hitting point where he plans to hit the
ball to which we refer as the virtual hitting point.

Hitting Stage. The ball moves towards the virtual hitting
point where the player intercept it. The racket moves towards
the virtual hitting point until it hits the ball in a circular
movement. For expert players the duration of this stage is
constant and lasts approximately80 ms.

Finishing Stage.After having been hit, the ball is on the
return path to the opponent while the racket moves upwards
to an end position.

1In contrast to human ping pong rules, the table is only0.5 m wide and
2 m long. The net has a height of0.25 m. Wire frames were attached at
each end of the table and the net. For a valid shot, the ball hasto pass all
frames. As a result, the maximum ball speed is slowed down to10 m/s.

We have tested and verified the stages suggested by
Ramanantsoa et al. [10] in a VICONTM motion capture setup
for two intermediate players where each of the stages can be
observed distinctively (see Figure 1).

B. Movement Selection and Goal Determination

As humans appear to rely on motor programs [12], it is
also plausible that pre-structured movement commands are
employed for each of the four stages. These motor programs
need to be chosen based upon the environmental stimuli at
the beginning of each stage.

Motor programs determine the order and timing of the
muscle contractions and, by doing so, define the shape of the
action produced. Sensory information can modify motor pro-
grams to generate rapid corrections in the case of changing
environmental demands as found in table tennis by Bootsma
and van Wiering [13]. This observation is strengthened by
the supportive evidence of Tildesley and Whiting [14], who
showed that expert table tennis players exhibit a consistent
spatial and temporal movement pattern. They concluded that
a professional player chooses a movement program for which
the execution time is known from his movement repertoire
and decides when to initiate the drive. This hypothesis is
known as operational timing hypothesis.

The problem of which information is used in order to de-
cide when to initiate the movement has not yet been solved.
It is likely that humans use the so-calledtime to contact,
which is the time until an object reaches the observer, to
control the timing. Hence, the operational timing hypothesis
implies that humans have to initiate the chosen movement
program when the time to contact reaches a critical value.

In our biomimetic player, we represent movement pro-
grams using splines. The hitting point is adapted according
to the incoming ball and the desired return. All other start
and end positions, velocities and accelerations of the stages
and the duration of the movements are fixed.

C. Movement Generation

Next, we need to discuss how the different strokes are
generated. There are infinitely many ways to generate racket
trajectories and, due to the redundancy of the arm, there
are also numerous different arm postures to realize the
same task-space trajectory in joint-space. In order to find
generative principles underlying the movement generation,



neuroscientists often turn to optimal control [15]. One ap-
proach is the use of cost functions which allow the com-
putation of trajectory formation for arm movements. Most
studies focus primarily on reaching and pointing movements
where one can observe a bell-shape velocity curve and a
clear relationship between movement duration and ampli-
tude. However, this relationship does not hold for striking
sports. Cruse et al. [16] suggested a cost function for the
control of the human arm movement based on the comfort of
the posture. For each joint, the cost is induced by proximity
to a comfort posture in joint-space, i.e., the cost is minimal if
the joint angles are the same as for the comfort posture and
increases correspondingly to the distance between comfort
posture and joint position. For movement generation, this
cost is minimized. We employ this cost function to select
a comfortable joint configuration at the hitting point (see
Section IV-C for details).

IV. A BIOLOGICALLY-INSPIRED TRAJECTORY

GENERATOR FORTABLE TENNIS STROKES

To evaluate and use the behavioral model presented in
Section III, we replace the data-driven observations by a
computational realization suitable for real-time execution
on a robot. To achieve this aim, we proceed as follows:
firstly, we discuss all required components in an overview.
Subsequently, we discuss the details of the dynamics model
for table tennis, the computation of the goal parameters, the
movement generation, the vision system and the filtering of
the vision information.

A. General Assumptions

As outlined in Section III-A, we assume the movement
stages of the model by Ramanantsoa et al. [10] and use a
finite state automaton to represent this model. In order to
realize each of these four stages, the system has to detect
the ball and determine its positionxb. Due to noise in the
vision processing, the system needs to filter this information
(see Section IV-F).

To generate the arm trajectories, we have to determine the
constraints for the movements of each joint of the arm in each
stage. While desired final joint configurations suffice for the
awaiting, preparation and finishing stages, the hitting stage
requires a well-chosen movement goal which is the hardest
to realize. The system has to first choose a pointxtable on the
court of the opponent where the ball needs to be returned2.
Secondly, we have to determine the intersection point of
the ball and the racket, which specify the virtual hitting
point xhp. The hitting point is determined by the location
where the ball trajectory intersects a virtual hitting plane in
the hitting area of the robot. Based on the choice of these
two points, the necessary batting position, orientation and
velocity of the racket are chosen as goal parameters for the
hitting movement. More details on the involved computations
are given in Section IV-C.

2Humans choose this point as part of a higher level strategy. To date, we
choose them ad-hoc and not conditioned on the opponent.

Movement initiation follows the presented movement
stages and is triggered when the timethp of the predicted ball
intersecting the virtual hitting plane is less than a threshold.
This step requires the system to predict when the ball is going
to reach the virtual hitting plane. The current hitting timecan
be determined by predicting the trajectory of the ball using
the dynamics model of the ball described in Section IV-B.
Following the suggestion in [17] that some online adaptation
of the movement can take place, we update the virtual
hitting point and subsequently the movement generation
for the hitting and finishing stage. For the determination
of the movement program, we rely upon a spline-based
representation for encoding the trajectory. More details are
given in Section IV-E. An overview of the resulting algorithm
can be found in Algorithm 1.

B. Dynamics Model of the Table Tennis Ball

To predict the position and velocity of the ball at time
tj+1 based on the ones at timetj , we have to model the
aerodynamics of the ball, and the physics of a ball’s bounce
off the table. To model the ballistic flight of the ball we
have to consider air drag, gravity and spin. As the latter is
hard to observe from data, our model currently neglects the
spin. For the table tennis ball, we can assume that the air
drag is proportional to the square of the velocity of the ball.
Using symplectic Euler integration, we can implement the
following model in discrete time form

aj+1 = g − C‖vj‖vj ,

vj+1 = vj + aj+1∆t,

pj+1 = pj + vj+1∆t,

(1)

wherea denotes the acceleration vector of the ball,v denotes
the velocity of the ball,p denotes the position of the ball,
g is the gravity vector,∆t is the time difference,C =
cwρA/(2m), cw is the drag coefficient,ρ is the density of
the air,A is the size of the ball surface andm is the mass
of the table tennis ball.

For the bouncing behavior of the ball on the table, we
assume a velocity change inz-direction only. This change
in velocity vz = −εT vz is determined by the coefficient of
restitutionεT .

C. Determining the Goal Parameters

After determining the virtual hitting point, the system can
freely choose the heightznet at which the returning ball
passes the net as well as the positionsxb, yb where the ball
will bounce on the opponents courts. They-axis is along the
net and thex-axis is aligned with the long side of the table.
The choice of these three variables belongs to the higher
level functionality (and is not covered in this model as we
do not attempt to model strategies based on an opponent),
we instead draw them from a distribution of plausible values.
To determine the goal parameters, we have to first compute
the desired outgoing velocity vectoro of the ball which
corresponds to the velocity of the ball after the impact with
the racket. Directly from this vector, we can determine the
required velocity and orientation of the racket.



a) Desired Outgoing Vector:Based on the dynamics
model derived in Section IV-B, we obtain 5 nonlinear equa-
tions with 5 unknowns, i.e., the time until the ball reaches
the opponents court, the time until the ball reaches the net
and the desired outgoing vector (3 components)

f(o,xhp, tnet) = xnet, (2)

f(o,xhp, ttab) = xtable, (3)

wherexnet = [xnet, znet]
T , xtable = [xb, yb, zb]

T , xnet is the
x-position for the net andzb is the height of the table. Since
these equations are nonlinear in the variables of interests,
we have to solve the problem numerically. Therefore, we
use a globally convergent solver for nonlinear equation
systems, which combines the Newton-Raphson update with
a modification for global convergence [18].

b) Racket Orientation:The orientation of the endeffec-
tor is specified as a rotation that transforms the normal vector
ne to the desired normal vectorned. To definened, we have
to compute the normal direction of the racketnrd that results
in the desired outgoing vectoro for the predicted velocity
of the ball i at the hitting point

nrd =
o− i

‖o− i‖
. (4)

Herei is the velocity vector of the incoming ball at the virtual
hitting point before impact. Note that we assume only a speed
changeo − i in the normal directionnrd. The rotation that
transformsne to nrd is defined in terms of quaternions by

qed = qrdqyrot, (5)

where qyrot is the quaternion that describes the rota-
tion from the racket to the endeffector andqrd =
(cos (γ/2) ,u sin (γ/2)), with γ = nT

e nrd/(‖ne‖‖nrd‖) and
u = ne ×nrd/‖ne × nrd‖, is the quaternion that defines the
transformation of the normal of the end-effectorne to the
desired racket normalnrd.

As there exist infinitely many racket orientations that have
the same racket normal, we need to determine the final
orientation depending on a preferred end-effector position.
The resulting quaternion of the end-effectorqed is determined
by the rotation aboutnrd. For this purpose, the orientation
of the end-effectorqed is rotated about the normalnrd of
the racket. The corresponding join values, velocities and
accelerations are then computed using inverse kinematics.
The inverse kinematics problem for the redundant DoFs is
solved numerically by minimizing the distance to the comfort
posture in joint space while finding the racket position and
orientation which coincides with the virtual hitting pointxhp.
The orientation whose corresponding joint configurationθhp

yields the minimum distance to the comfort positionθcom is
used as a desired racket orientation.

c) Required Racket Velocity:Next, we have to calculate
the velocity vector for the end-effector at the time of the
ball’s interception. We can describe the relation between the
components of the incoming and outgoing velocity vector
parallel to the racket norm using

o|| − v = εR(−i|| + v), (6)

whereεR denotes the coefficient of restitution of the racket,
v the speed of the racket along its normal ando|| and i||
denotes the components ofo and i, respectively, which are
parallel to the racket normal. This equation can be solved
for v which yields the desired racket velocity.

D. Movement Parameters

To perform a hitting movement to return an incoming ball,
we have to generate the movement for each of the four
stages. As stated in Section IV-A, we determine the start
and end position, velocity and acceleration for each of the
four stages. The start and end position for the awaiting and
preparation stage as well as the start and end configuration
of the finishing and hitting stage, respectively, are fixed and
chosen to produce a hitting movement similar as exhibited by
humans. The corresponding joint velocities and accelerations
are set to zero. The start and end position and velocity of
the finishing and hitting stage, respectively, are determined
by the joint configuration of the hitting point described above
and is determined for each stroke individually. The duration
of each stage (i.e.,tas, tps, ths, tfs) are chosen such that the
robot is able to execute the movement. The duration of the
hitting stageths is equal to the estimated time to hitthp.

E. Movement Generation

We plan our trajectory in joint space, where high velocity
movements can be executed more reliably than in workspace.
For the execution of the movements, we need a representa-
tion to obtain positionθ(t), velocity θ̇(t) and accelerations
θ̈(t) of the joints of the manipulator at each point in timet
so that it can be executed with an inverse dynamics based
controller. We used fifth order polynomialsθk =

∑5
l=0 αklt

l,
where αk = [αk0, αk1, αk2, αk3, αk4, αk5]

T are adjustable
parameters andk denotes the DoF, to represent the trajectory
of all stages. Such polynomials are the minimal sufficient
representation, generate smooth trajectories and can be evalu-
ated quickly as well as easily. Applying the four stage model
of Ramanantsoa et al. [10], we can determine four different
splines interpolating between the initial and final positions.
As the trajectory of the hitting and finishing state depends on
the hitting point, trajectories have to be calculated jointly at
the beginning of the hitting stage and have to be recalculated
every time the virtual hitting point is updated.

The boundary conditions for the joint positions, velocities
and accelerations at the time pointti and tf are given by

θk(ti) = pi θ̇k(ti) = vi θ̈k(ti) = ai (7)

θk(tf ) = pf θ̇k(tf ) = vf θ̈k(tf ) = af (8)

wherepi, vi, ai, pf , vf andaf are the joint angles, velocities
and accelerations at the time pointsti and tf , respectively.



Algorithm 1 Table Tennis Algorithm
Initialize: switch toAwaitingStage
repeat

Extract ball positionxb

EK-Filter: xb → xt, ẋt

EK-Prediction:xt, ẋt → thp,xhp, ẋhp

{Switch Stage}
if FinishingStageand MovementEnds

Switch toAwaitingStage
Computeαk = M−1(0, tas)b

as
k for each DoFk

else if AwaitingStageand thp ≤ tas + ths

Switch toPreparationStage
Computeαk = M−1(0, tps)b

ps
k for each DoFk

else if PreparationStageand thp ≤ ths

Switch toHittingStage
else if HittingStageand BallHit

Switch toFinishingStage
Computeαk = M−1(0, tfs)b

fs
k for each DoFk

end if

{Update Striking Motion}
if HittingStage

Solve with Newton-Raphson foro using
f(o,xhp, tnet) = xnet

f(o,xhp, ttable) = xtable

Determine joint configuration at hitting point
v = o|| + εRi||/(1 + εR)
nrd = o− i/(‖o− i‖)
qed = qrdqyrot

Determine optimal rotation aboutnrd by
θopt = argminθhp

‖θcom − θhp‖
with Inverse Kinematics:xhp, qed, v → θhp

Computeαk = M−1(0, ths)b
hs
k for each DoFk

end if

{Executing Movement}
for each DoFk do

θk =
∑5

l=1 αklt
l

end for
Execute (θ, θ̇, θ̈) with Inverse Dynamics Control.

until user stops program

With the linear equation systemMα = b given by
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we can solve forα by Gauss-Seidel elimination efficiently.

Fig. 2. This figure shows the movement of the racket and the ball on the
real robot for a successful striking movement. The hitting point is indicated
by the black triangle.

F. Filtering the Vision Information

The vision system consists of a stereo camera setup
with two Prosilica GE640C Gigabit Ethernet cameras and a
GPU-based 60 Hz blob detection. The vision informationxb

contains the 3D position coordinates of the detected blob. To
filter xb and to track the table tennis ball, we use an extended
Kalman filter (EKF) [19]. The system equations used for the
EKF are given in Equation (1).

V. EVALUATIONS

In this section, we demonstrate that the biomimetic tra-
jectory generator model can be used effectively for robot
table tennis in a ball cannon setup. For this purpose, we will
first examine the resulting setup in a simulation of the robot
table tennis setup. We discuss the accuracy of the system in
striking a ball such that it hits a desired point. As second
evaluation, we implement the model on a real robot and
demonstrate that it can successfully return balls. We employ a
Barrett WAMTM arm with seven DoFs that is capable of high
speed motion. A racket with16 cm in diameter is attached
to the end-effector. The robot arm interacts with a standard
sized table and a table tennis ball according to the ITTF
rules. The ball is served randomly by a ball cannon to the
forehand of the robot. As a result, the balls passes the robot’s
end of the table in an area of approximately1 m2. This area
serves as the virtual plane.

A. Evaluation in Simulation

We employed the SL framework [20] to create a sim-
ulation of an anthropomorphic robot arm. To create the
environment, we used a simplified model of the flight and
bouncing behavior of the ball as discussed in Section IV-
B. We model the noise and delay of the vision system but
have not yet included spin. The coefficients of restitution of
both racket-ball and ball-table interactions were determined
experimentally.

The table tennis system is capable of returning an in-
coming volley to the opponents court which was served
by a ball cannon at random times and to arbitrarily chosen
positions. In simulations where a ball cannon served the ball
10,000 times to a random position in the work-space of the
robot, the system was able to return 98.5% of the balls. In
85% of the trials the ball was returned successfully to the
opponent court. The mean deviation of the position of the



(a) Awaiting Stage (b) Preparation Stage (c) Hitting Stage (d) Finishing Stage

Fig. 3. The figure shows the different stages, matching thosein Figure 1, but performed by the real robot.

racket mid point to the ball at the moment of contact is
1.8 cm. This result could be further improved by optimizing
the determination of the outgoing vector and the trajectory
generation in joint space.

B. Application on a Barrett WAMTM

Subsequently, we successfully transferred the setup onto a
real Barrett WAM robot equipped with two partially overlap-
ping stereo camera pairs. We use the exact same biomimetic
trajectory generator as in the simulated setup. As the arising
differences were small, we will only focus on these in this
discussion. The extended Kalman filter, based on the ballistic
flight of a point mass with estimated restitution factors, tracks
the ball well. However, the prediction of the virtual hitting
point and time is less accurate than in simulation due to
the neglected spin and inaccuracies in the vision system.
Hence, these predictions need to be updated frequently and
the trajectory generation is adapted. As a result, the robot
manages to hit the ball. See Figure 3 for snapshots of the
movement and Figure 2 for the trajectories of the racket and
the ball of the real system.

VI. CONCLUSION

Using all knowledge on human table tennis available to
us, we have formed a trajectory generator for striking move-
ments. This model is realized in a computational form using
analytical counterparts. We show that the resulting model can
be used as an explicit policy for returning incoming table
tennis balls to a desired point of the opponent’s court in
simulation as well as on the real of a redundant seven DoF
Barrett WAMTM robot. Our setup, with an anthropomorphic
arm and a cluttered environment, is significantly more chal-
lenging than the tailored ones of previous robot table tennis
players. The biomimetic model with its four stages of the
table tennis stroke and the goal parameterization using virtual
hitting points and pre-shaping of the orientation has proven
to be successful in operation.

Our future work will concentrate on achieving a higher
precision in returning the ball to a desired point on the table.
Furthermore, we plan to replace the spline based trajectory
for movement generation by using motor primitives [21] for
each of the four stages suggested by Ramanantsoa.
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[6] H. Fässler, H. A. Beyer, and J. T. Wen, “A robot ping pong player:
optimized mechanics, high performance 3d vision, and intelligent
sensor control,”Robotersysteme, vol. 6, pp. 161–170, 1990.

[7] F. Miyazaki, M. Matsushima, and M. Takeuchi, “Learning to dynam-
ically manipulate: A table tennis robot controls a ball and rallies with
a human being,” inAdvances in Robot Control. Springer, 2005, pp.
3137–341.

[8] M. Matsushima, T. Hashimoto, M. Takeuchi, and F. Miyazaki, “A
learning approach to robotic table tennis,”IEEE Trans. on Robotics,
vol. 21, pp. 767 – 771, 2005.

[9] L. Acosta, J. Rodrigo, J. Mendez, G. Marchial, and M. Sigut, “Ping-
pong player prototype,”Robotics and Automation magazine, vol. 10,
pp. 44–52, 2003.

[10] M. Ramanantsoa and A. Durey, “Towards a stroke construction
model,” International Journal of Table Tennis Science, vol. 2, pp. 97–
114, 1994.

[11] A. Durey and F. Orfeuil, “Spins and trajectories in table tennis,” in
Table Tennis Scientist’s Conference, 1989.

[12] R. Schmidt and C. Wrisberg,Motor Learning and Performance,
2nd ed. Human Kinetics, 2000.

[13] R. Bootsma and P. van Wieringen, “Timing an attacking forehand
drive in table tennis,”Journal of Experimental Psychology: Human
Perception and Performance, vol. 16, pp. 21–29, 1990.

[14] D. Tyldesley and H. Whiting, “Operational timing,”Journal of Human
Movement Studies, vol. 1, pp. 172–177, 1975.

[15] E. Todorov, “Optimality principles in sensorimotor control,” Nature
Neuroscience, vol. 7, pp. 907–915, 2004.
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