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On-the-Fly Jumping with Soft Landing: Leveraging Trajectory

Optimization and Behavior Cloning

Edoardo Panichi†, Jiatao Ding†⋆, Vassil Atanassov, Peiyu Yang, Jens Kober, Wei Pan and Cosimo Della Santina

Abstract—Quadrupedal jumping has been intensively investi-
gated in recent years. Still, realizing controlled jumping with soft
landings remains an open challenge due to the complexity of the
jump dynamics and the need to perform complex computations
during the short time. This work tackles this challenge by lever-
aging trajectory optimization and behavior cloning. We generate
an optimal jumping motion by utilizing dual-layered coarse-to-
refine trajectory optimization. We combine this with a variable
impedance control approach to achieve soft landing. Finally, we
distill this computationally heavy jumping and landing policy
into an efficient neural network via behavior cloning. Extensive
simulation experiments demonstrate that, compared to classic
model predictive control, the variable impedance control ensures
compliance and reduces the stress on the motors during the
landing phase. Furthermore, the neural network can reproduce
jumping and landing behavior, achieving at least a 97.4% success
rate. Hardware experiments confirm the findings, showcasing
explosive jumping with soft landings and on-the-fly evaluation
of the control actions.

Index Terms—compliant control, behavior cloning, neural
network, trajectory optimization, and quadrupedal robots.

I. INTRODUCTION

Quadrupedal robots excel at navigating complex terrain,
making them invaluable for exploring uncharted areas, such as
challenging stairs, rocky terrain, and confined spaces. Among
various locomotion modalities, quadrupedal jumping enhances
mobility and adaptability [1], [2]. In particular, achieving a soft
landing after touch-down reduces mechanical stress, extending
robotic durability [3]. We aim to address this challenge,
especially for the quadruped without precise contact force
sensors [4] or without compliant mechanical design [5].

To address the computationally intense jumping planning
and control task, the pipeline is often split into two stages: a
motion planning stage and a motion tracking stage. A prevalent
approach in the planning phase is trajectory optimization (TO),
aiming for the optimal trajectory passing through a set of
waypoints. This method has enabled various achievements,
including jumping through window-shaped obstacles [6], ro-
bust jumping [7], and continuous jumping [8]. To achieve

Edoardo Panichi, Jiatao Ding, Peiyu Yang, Jens Kober and Cosimo
Della Santina are with the Department of Cognitive Robotics, Delft Uni-
versity of Technology, Building 34, Mekelweg 2, 2628 CD Delft, Nether-
lands (e-mail:{edoardo.panichi99@gmail.com, J.Ding-2@tudelft.nl, p.yang-
5@student.tudelft.nl, J.Kober@tudelft.nl, C.DellaSantina@tudelft.nl}). Vassil
Atanassov is with the Oxford Robotics Institute, Department of Engineering
Science, University of Oxford, UK (email: vassilatanassov@robots.ox.ac.uk).
Wei Pan is with the Department of Computer Science, The University of
Manchester, UK (wei.pan@manchester.ac.uk). Cosimo Della Santina is also
with the Institute of Robotics and Mechatronics, German Aerospace Center
(DLR), 82234 Wessling, Germany (e-mail: cosimodellasantina@gmail.com).

† These authors contribute equally.
⋆ Corresponding author.

Fig. 1. The Go1 jumps with a soft landing, using the learned policy from
the behavior cloning. The distance between the red and green lines is 40cm.

online optimization, [9] ignored joint dynamics and kinematics
during the stance phase, assuming that the feet are located
within a confined workspace that does not violate the limits
of kinematics. Alternatively, [10] exploited analytical solutions
for fast computation. After obtaining a reference, model-based
controllers such as virtual model control [11], model predictive
control (MPC) [12], and whole-body control [13] can be
integrated for motion tracking. However, none of the above
work emphasizes soft landing.

A soft landing is characterized by two main features:
compliance with movement and reduction in motor stress.
In this context, [14] developed an optimal landing controller
to regulate touchdown postures and force profiles. Although
impressive, this work focused on falling rather than jumping.
[15] solved the problem of landing control with aggressive
horizontal velocities, which, however, is limited by the as-
sumption of landing on flat ground. [16] utilized an online TO
to generate the Cartesian space landing motion but ignored
the feasibility of the joint movement. [17] adopted virtue
force control for soft landing, however, without considering
constraints.

In contrast to model-based approaches, model-free strate-
gies, such as reinforcement learning (RL), enable learning
control policies through data sampling. In particular, deep RL
has facilitated significant advancements in performing jumping
tasks [18], [19], among which the imitation learning (IL)
framework has been well investigated [20]–[22]. However, the
RL framework requires careful design and tuning of the reward
function and needs to bridge the sim2real gap. In contrast,
behavior cloning (BC), a variant of IL [23], allows the agent
to learn an effective policy matching the behavior of the expert
while avoiding the computational overhead of TO. Although
impressive results have been achieved recently [24], [25], very
limited trials in quadrupedal jumping are reported. Kurtz et
al. [26] appears to be the closest study, where a synthetic
dataset was used to train a model on robot reorientation and
landing during falls. However, comprehensive jumping with
soft landing is not investigated.
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In this work, we exploit the best of both fields, i.e.,
TO and BC, to achieve quadrupedal jumping with a soft
landing. In particular, our solution involves a deep supervised
learning framework that replaces the model-based planner
and controller, enabling on-the-fly execution. First, we utilize
model-based TO to generate optimal reference conditioned by
jumping goals. Then, integrated with a variable impedance
controller (VIC) for compliant landing, we generate a synthetic
dataset of 11, 000 jumps with soft landings. This dataset is then
used to train a neural network (NN), achieving performance
comparable to the model-based method, but releasing the
computational burden.

The main contributions are as follows:
• We formulate a dual-layer TO for jumping motion gen-

eration, leveraging the actuated spring-loaded inverted
pendulum (aSLIP) dynamics and the single rigid body
(SRB) dynamics.

• We develop a compliant controller to minimize landing
impact and motor efforts after touch-down.

• We propose a BC scheme for on-the-fly control. Ex-
periments demonstrate that the trained NN successfully
replicates the soft landing behaviors and bypasses com-
putational inefficiencies associated with the planner.

The rest of this article is organized as follows. In Section II,
we state the problem formulation. Section III details the
optimization-based jumping and landing control strategy. Sec-
tion IV explores the supervised learning-based BC approach.
Section V presents the experimental results, and Section VI
concludes this work and discuss the future work.

II. PROBLEM STATEMENT

The primary objective is to perform a quadrupedal jump
with a soft landing. In particular, we aim for on-the-fly
execution without necessitating extensive computation.

For a jumping motion, the full state of the robot is

X+ = [x, y, z, ϕ, θ, ψ, ẋ, ẏ, ż, ωr, ωp, ωy, q
T, q̇T], (1)

where [x, y, z] represent the 3D center of mass (CoM) position,
while [ϕ, θ, ψ] denote roll, pitch, and yaw (RPY) angles.
[ẋ, ẏ, ż] and [ωr, ωp, ωp] represent the linear velocity and the
angular velocity. Joint positions and velocities are indicated as
q ∈ R12 and q̇ ∈ R12, respectively.

In this work, we focus on the sagittal jump. Given the
desired jumping distance d, the state of the robot at any given
moment is then encapsulated by

X = [z, ϕ, θ, ψ, ẋ, ẏ, ż, ωr, ωp, ωy, q
T, q̇T, d]. (2)

Denoting the control input u, the problem we seek to solve
is then defined as:

Problem: Starting from an initial state denoted by X0,
identify the control action sequence u that enables the robot to
achieve a jump of the desired length d. This sequence should
be optimized to minimize motor effort and ensure smooth
deceleration during the landing phase for a soft landing.
Moreover, real-time computation of u must be ensured.

Notations: Matrices and vectors are separately highlighted
in bold normal font and bold italic font. The superscript
(·)T represents the transpose operation. For the matrix with

multiple rows and columns, the index (·)(k) means the k-
th column and the subscript (·)(i,j) notes the element in the
i-th row and j-th column. For the vector, (·)(k) refers to
the k-th element. Variables accompanied by (·)r denote the
reference values. Besides, variables with the superscript (·)max

and (·)min separately denote the upper and lower boundaries.

III. JUMPING PLANNING AND CONTROL

This section details the model-based jumping motion plan-
ning and control pipeline. In particular,for motion planning,
dual-layer TO is proposed. For the soft landing, we resort to
the variable impedance control.

A. Jumping Motion Generation: Coarse-to-refine TO

As illustrated in Fig. 2, we divide the jumping motion into
a stance phase and a flight phase, with all and none of the feet
in contact, respectively. Assuming Ns knots for stance (each
knot lasts ts) and Nf knots for flight (each knot lasts tf ), we
generate the jumping trajectory over N knots (N=Ns+Nf ).

1) First-layer: TO with aSLIP dynamics: Given the desired
landing position, the first layer quickly generates a raw jump-
ing trajectory, providing an initial guess for the second layer.
Modeling the quadruped as an aSLIP [16], we solve

arg min
c,a,dt

Jcost, (3a)

s.t. Kinematic constraints:
c(0) = c0, ċ(0) = 0, (3b)
c(1,N−1) = zrf , (3c)
c(1,Ns−1) = zrtakeoff, (3d)

cmin ≤ c(k) ≤ cmax, ∀k ≤ Ns, (3e)

dtmin ≤ dt ≤ dtmax, (3f)
Dynamics constraints:
∀k ∈ [0, 1, . . . , N−1] :

c(k + 1) = Taylor(c(k), ċ(k), c̈(k)), (3g)
∀k ≤ Ns :

c̈(k) =Fs(c(k))/m+g+a(k), (3h)
a(1,k) + Fs,z(c(k))/m ≥ 0, (3i)
|c̈(0,k)/(c̈(1,k) + g)| ≤ µ, (3j)

∀k > Ns :

c̈(k) = g, (3k)

In the above formulation, c ∈ R2×N denote the sagittal
CoM position where the first and second row separately denote
the forward and vertical position. a ∈ R2×N denote the
sagittal acceleration resulting from the actuation force, and

z
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Fig. 2. An example jumping trajectory generated with the aSLIP model. The
red zone and green zone separately mark the stance and the flight phase.
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dt ∈ R2 denote the time steps for the stance and flight phase.
Fs(c(k)) ∈ R2 is spring force (regarding the current body
position) and Fs,z(c(k)) is the vertical component. m is the
total mass and g = [0, g]T is the gravitational acceleration.

Cost function: The cost function in (3a) penalizes control
inputs (i.e., a) and CoM jerk (

...
c ) during stance, penalizes the

jumping height during the flight and penalizes the tracking
error of landing position. In short, it is defined as

Jcost =

Ns∑
k=1

(βa∥a(k)∥2 + βjerk∥
...
c (k)∥2)+

N∑
k=Ns

βf∥cz(k)− zrtakeoff∥2 + βx∥cx(N−1)− xrf∥2,
(4)

with xrf and zrtakeoff being the desired landing distance and
take-off height, βa, βjerk, βf and βx being the coefficients.

Constraints: The kinematic constraints in (3b) ensure that
the trajectory starts from a particular initial state (with c0 ∈ R2

being the initial CoM position). (3c) ensures that the robot
lands at the desired height zrf (zrf = z0 + zd as described
in Fig. 2). The constraint in (3d) regulates the height of the
take-off (zrtakeoff) so that the robot can jump. Furthermore, (3e)
obeys the kinematic reachability. (3f) limits the timestep.

The dynamics constraints ensure that the robot follows the
aSLIP dynamics (with (3h) in stance and (3k) in flight). (3g) is
realized through second-order Taylor integration. Furthermore,
the constraint in (3i) avoids free fall, and (3j) ensures that there
is no slippage in stance with µ being the friction coefficient.

2) SRB-based kino-dynamics optimization: Using the first
layer as the reference, we then refine the motion with kino-
dynamics optimization, leveraging the SRB dynamics1, fol-
lowing

arg min
X+,F,r

∥X̃− X̃r∥2Q, (5a)

s.t. Kinematic constraints:
X+(0) = X+

0 , r(0) = r0, (5b)
cd − ϵ ≤ X(0:2,N−1) ≤ cd + ϵ, (5c)
∀k ∈ [1, 2, . . . , N ] :

ri(k) = FK(qi(k)), i ∈ {1, 2, 3, 4} (5d)

∥hi(k)− ri(k)∥ ≤ Lmax
leg , (5e)

X+(k) ∈ B, (5f)
Dynamics constraints:
∀k ≤ N − 1 :

Ẋ+(k + 1) = f(X+(k), r(k),F(k)), (5g)
∀k ≤ Ns :

CCC(F(k), r(k)), (5h)

|[J(qi(k))]TFi(k)| ≤ τmax, (5i)

− µFi
(2,k) ≤ Fi

(0,k) ≤ µFi
(2,k), (5j)

− µFi
(2,k) ≤ Fi

(1,k) ≤ µFi
(2,k). (5k)

With the above formulation, we optimize the full state (de-
fined in (1)) with X+ ∈ R36×N , contact force (F ∈ R12×N )
and foot location (r ∈ R12×N ). Fi, hi, qi and ri (∈ R3×N )
are the contact force, hip position, joint angle and foot location
of the i-th leg (i ∈ {1, 2, 3, 4}).

1The formulation draws inspiration from the work in [14]. However, while
[14] mainly addresses falls, we here define the TO for explosive jumping.

Cost functions: (5a) penalizes the tracking errors of the
reference CoM motion. X̃ ∈ R6×N contains the first six states
of X+ and X̃r ∈ R6×N contains the reference CoM position
and body inclination, among which the reference lateral CoM
position and body inclination angles are zeros by default. The
state errors are weighted by the matrix Q.

Constraints: Constraints (5b) define the initial conditions,
including the starting CoM state X+

0 and the initial foot
position r0. (5c) ensure the terminal CoM position near the 3D
target position (cd ∈ R3), with ϵ serving as slack parameters.

The constraint in (5d) transforms the joint angles into
the feet’ positions with forward kinematics. (5e) restricts leg
length within kinematic reachability, defined by Lmax

leg .
The constraint (5f) sets boundaries for the state variables.
(5g) imposes the SRB dynamics. At each step, we

Ẍ+
(0:2,k)=

nc∑
i=1

Fi(k)/m−fg,

d

dt
(IX+

(9:11,k))=

nc∑
i=1

(ri(k)−X+
(0:2,k))×Fi(k). (6)

In (6), linear dynamics is defined as the sum of contact
forces acting on each foot, minus the gravitational force
(fg ∈ R3). The rotational dynamics is determined by the
torque generated by these forces around the CoM. The variable
nc represents the number of feet in contact with the ground, I
is the inertia tensor. Note that in the flight phase (k ∈ (Ns, N ]),
the robot follows a parabolic trajectory.

Equation (5h) enforces contact complementary constraints,
helping to maintain contact in the stance phase and improving
the convergence of the TO algorithm. Please check [14] for
more details.

Inequality constraint in (5i) guarantees a reasonable joint
torque, where J(qi(k)) ∈ R3×3 is the contact Jacobian. The
constraints in (5j) and (5k) prevent slippage.

B. Soft Landing Control

To realize soft landing, we need to mitigate impact perturba-
tions. The variable impedance control proposed in [27] could
minimize accelerations while keeping tracking errors within
an acceptable range by regulating the impedance online. In
this work, we first introduce the basic idea and then apply it
to landing control.

1) VIC basis: VIC works by solving the following opti-
mization problem [27]

argmin
D,K

J(D,K), (7)

s.t. Dmin
(i,j) ≤ D(i,j) ≤ Dmax

(i,j),

Kmin
(i,j) ≤ K(i,j) ≤ Kmax

(i,j),

max
x̃0, ˙̃x0,Fext

|x̃i(t)| ≤ bi ∀t ∈ [0,+∞),

s.t. x̃max
0 ≤ x̃0 ≤ x̃max

0 ,

˙̃xmin
0 ≤ ˙̃x0 ≤ ˙̃xmax

0 ,

Fmin
ext ≤ Fext ≤ Fmax

ext ,

Λ(q)¨̃x+D ˙̃x+Kx̃ = Fext.

with i ∈ {0, . . . , 5}, j ∈ {0, . . . , 5}.
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The above problem seeks to find the optimal damping
matrix (D ∈ R6×6) and stiffness matrix (K ∈ R6×6) that
minimize the cost function J(D,K). The solution ensures
bounded tracking errors (x̃ ∈ R6) over time. In particular,
the peak value of the i-th component over time (x̃i(t))
is constrained within bi, assuming bounded external forces
(Fext ∈ R6) and initial conditions (x̃0 ∈ R6, ˙̃x0 ∈ R6).

In the optimization problem, x̃ denotes the tracking error
of the CoM position and rotation. Λ(q) ∈ R6×6 represents the
positive definite Cartesian inertia, and the vector Fext encap-
sulates the external force/torque acting on the CoM. Bilateral
constraints are applied to the variables D(i,j), K(i,j), x̃0, ˙̃x0,
and Fext, of which the boundary values are chosen to satisfy
the stability, motion tracking and feasibility requirements.

Assuming Λ(q), D and K diagonally dominant, [27]
demonstrates that a closed-form solution of the above op-
timization problem exists. The i-th diagonal element of the
matrix D (denoted as di, bounded by dmin

i and dmax
i ),

di = min

(
max

(
dmin
i ,

2mi
˙̃x0i,max

(bi − x̃0i,max)e

)
, dmax

i

)
. (8)

where, mi represents the i-th diagonal element of the matrix
Λ, e is the natural constant. x̃0i,max and ˙̃x0i,max (with i ∈
{0, . . . , 5}) are defined by

x̃0i,max ≜ max
(
|x̃min

0 (i)|, x̃max
0 (i)

)
,

˙̃x0i,max ≜ max
(
| ˙̃xmin

0 (i)|, ˙̃xmax
0 (i)

)
.

To achieve a soft landing, we demand a critically damped
behavior in the system. Then, the i-th diagonal element of the
matrix K (denoted as ki) is determined as

ki = d2i /(4mi). (10)

2) Landing controller: Upon landing, we calculate the
torque command for soft landing, following

1) Calculate damping D and stiffness K with VIC.
2) Validate the gains against the stability criteria. If the

stability criteria are satisfied, assign D and K as the final
gains, i.e., Dfinal and Kfinal. Otherwise, assign to Dfinal
the stability bound (see [27]) plus a small increment,
and Kfinal can be recalculated using (10).

3) Calculate the desired wrench Wcom ∈ R6 as follows

Wcom = Kfinalx̃+Dfinal ˙̃x. (11)

4) Computing GRFs via quadratic programming (QP). De-
tails follow the work in [11].

5) Generating VIC torque τVIC ∈ R12 with Jacobian
transformation.

IV. SUPERVISED LEARNING-BASED BEHAVIOR CLONING

This section introduces the BC scheme for on-the-fly jump-
ing and landing control. First, we summarize the model-based
jumping control pipeline. Then, we introduce two methods to
learn jump and landing behavior.

A. Jumping Control Pipeline

Fig. 3 describes the pipeline for model-based jumping plan-
ning and soft landing control. Given the task requirement, i.e.

the desired jump distance, the dual-layer offline TO generates
the optimal jump trajectory. For online motion control, MPC
[16] is used to generate the torque command (τmpc ∈ R12) in
the stance phase. Once landing, the VIC is activated2.

In addition to feedforward torque (τff ∈ R12) above, the
feedback torque (τfb ∈ R12) is also considered, following

τfb = Kp(q
r − q) +Kd(q̇

r − q̇). (12)

where Kp and Kd (∈ R12×12) are the proportional and deriva-
tive gains. The reference joint angle qr ∈ R12 and angular
velocity q̇r ∈ R12 are calculated by inverse kinematics.

Note that Kp and Kd are set at low values to avoid
interference with the compliance provided by the VIC.

B. Deep Learning-based BC

Since the TO process above is computationally intensive,
it is difficult to execute all processes on the fly, limiting
the deployment of responsive quadruped robots in real-world
environments. To overcome this issue, this section introduces
the BC method, which directly learns a mapping from obser-
vations to actions by mimicking expert demonstrations.

1) Network structure: Inspired by the work in [26], we
developed and compared two distinct neural network archi-
tectures, named Feedforward NN and Feedback NN.

Feedforward NN: The core concept of the ‘feedforward’
approach involves a single pre-jump prediction by the neural
network, forecasting the trajectory over the whole jumping
process. To enhance the robustness, we take the initial state
and desired jumping length (ddes) as the input3. That is,

XFF=[z0, ϕ0, θ0, ψ0, ẋ0, ẏ0, ż0, ωr,0, ωp,0, ωy,0, q0, q̇0, ddes].
(13)

Following the control logic in Fig. 4(a), the Feedforward
NN predicts the desired feedforward torque, joint angle and
angular velocities for low-level control. For safety checking,
we also output the sagittal CoM position. As a result, the
output of the feedforward NN (OFF ) comprise

OFF = [xp, zp, τp, qp, q̇p] , (14)

with p indicating predicted trajectories.
As depicted in Fig. 4(a), in real applications, τp replaces

τff in Fig. 3, and qp and q̇p facilitate the computation of
τfb according to (12). The generated trajectory contains 150
timesteps. We interpolate the output to synchronize with the
controller’s frequency.

2VIC can also be used in the stance phase. However, considering that the
MPC can achieve better tracking performance, we use it for stance control.

3A comparison study with the Feedforward NN without taking the initial
state as the input is attached in the video.

4

robot
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aSLIP-TO

State estimation

Joint-space impedance

τmpc

τfb

VIC τrSRB-TO

Planning

τff

Landing τvic

N

Y

Control

(Offline) (Online)

Task

Fig. 3. Overall pipeline for model-based control.
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feedback control system. With this structure, the neural net-
work computes torque commands τp for each loop, based on
the real state of the robot. The input to this network (XFB) is
a 36-element vector, defined as

XFB = [z, ϕ, θ, ψ, ẋ, ẏ, ż, ωr, ωp, ωy, q, q̇, d, t]. (15)

where t is the elapsed time since the start of the motion.
Then Feedback NN outputs the torque command, follows

OFB = τp,

Differing from the Feedforward NN, the Feedback NN
predicts 12 joint torques at each timestep, which is applied
directly to the robot, as illustrated in Fig. 4(b).

2) Data collection: As described in Section IV-B1, the
BC methodology belongs to supervised learning. Since we
adopt the deep learning framework, the quality and volume
of training data are paramount. For this project, we used
the simulation engine PyBullet [28] to generate a diverse
dataset, comprising approximately 11,000 simulated jumps
under varying conditions. These jumps were executed by the
robot using the framework described in Fig. 3. Specifically, the
robot was programmed to jump forward, ranging from 0.10m
to 0.55m, in increments of 0.01m4. This approach ensured that
each discrete distance was represented equally in the dataset,
providing a comprehensive basis for training the algorithm.

To explore the whole state space while avoiding overfitting,
we introduced three types of noise when collecting data:

• Gaussian noise in the initial configuration, facilitating a
broad range of starting positions.

• Gaussian noise in the state, exploring the neighborhood of
the trajectory and promoting resilience to sensory errors.

• An external disturbance force applied to the robot’s CoM.
The disturbance force, equivalent to 10% of the robot’s
mass, was applied with a 30% probability at each control
iteration, with its direction randomized.

Of the 11,000 jump simulations, one third incorporated all
three types of noise. The remaining two-thirds included only
the first two types, ensuring a balanced and comprehensive
dataset for training our BC network.

V. EXPERIMENTAL VALIDATION

This section verifies the proposed methodology. To start, we
clarify the evaluation metrics for landing compliance. Then,
we compare the SLIP-TO [16] and the dual-layer TO, MPC
and VIC, and fully analyze the BC performance in simulation
where the three types of noises described in Section IV-B2

4The dual-layer TO hardly generates a feasible jumping longer than 0.55m.

are added in simulations when evaluating MPC, VIC and BC
policies. Finally, we report the hardware experiments. Results
can be seen: https://youtu.be/EEsEgtZr62s

A. Evaluation Metrics

As introduced in Section I, a soft landing is distinguished
by two key characteristics: minimal stress on the motors and
a compliant response from the robot. To evaluate motor effort,
we devised two metrics: rotational effort and peak torque.

The rotational effort is defined as

Rotational Effort =
12∑
i=1

∫
|τi(t)| dt, (16)

with τi being the sensory torque of the i-th motor, dt is the
time interval of each control loop.

The peak effort is defined as

Peak Effort = max
j


√√√√ 12∑

i=1

τ2ij

 , (17)

with j being the time instance and i the motor number.
The low rotational effort and peak effort indicate a soft

landing. However, although rotational effort and peak effort
effectively measure motor stress, they do not directly capture
the lading impact. To this end, we also examine the maximal
CoM acceleration during landing, which can characterize the
contact force when using the single rigid body dynamics, as
listed in (6). Note that we do not evaluate the contact force
directly since the measured force will drift a lot when landing
occurs, especially when equipped with cheap sensors.

B. Tracking Performance-SLIP-T0 [16] vs. dual-layer TO

We here compare the tracking performance with different
reference trajectories generated by SLIP-TO in [16] and the
dual-layer TO proposed in the work. For a fair comparison,
we use the same controller, i.e., MPC, in both cases.

To quantify the result, we compute the mean square error
(MSE) of each jumping trajectory. The robot jumped from
0.1m to 0.55m, in increments of 0.05m. Each distance is
repeated 20 times (adding Gaussian noise in the state each
time), and we report the mean values and standard deviations
(Std.) of MSE. Fig. 5 reveals that the dual-layer TO consis-
tently outperforms SLIP-TO (except at 0.35m-‘CoMx MSE’),
meaning that a refined model yields improved performance.

C. Landing Performance in Simulation - MPC vs. VIC

To verify the soft landing on flat ground, we compare the
performance with the explosive jump at different distances
(ranging from 0.1m to 0.55m, increasing by 0.05m). For each
distance, the robot completed 20 trials, and we report the mean
values and standard deviations of each metric.

When evaluating the MPC, we adhered to the scheme
outlined in Fig. 3, while continuing to use the MPC even after
landing. Conversely, we switched to the VIC when the robot’s
four feet made contact with the ground.

Fig. 6 and Fig. 7 separately plot the rotational effort and
peak effort during the landing phase. As depicted in Fig. 6, the

XFF

robot

Joint-space
 impedance

τp

τfb

τr
qp, qp

q, q

XFB

robot

τp

(a) (b)

Fig. 4. Behavior clone schemes: (a) Feedforward NN, (b) Feedback NN.

Feedback NN: The Feedback NN works like a traditional

https://youtu.be/EEsEgtZr62s
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Fig. 5. CoM tracking error with SLIP-TO and dual-layer TO. ‘CoMx’ and
‘CoMz’ separately denote the forward and vertical CoM position.
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Fig. 6. Rotational effort after landing when jumping on flat ground.

VIC generally shows reduced rotational effort across various
jump distances, except for the 0.50m forward jumping. In addi-
tion, Fig. 7 shows that the VIC reduces the peak effort across
all jumping distances. In particular, the maximum torque is
reduced by around 40% when jumping from 0.2m∼0.5m.

Besides, Fig. 8 show the maximal CoM acceleration along
the x- (forward) and z- (vertical) axes with various jumping
distances. It is clear that the VIC consistently outperforms the
MPC in reducing vertical acceleration (see plots in ‘CoMz
max. acc’) at all jump distances. A similar trend is also
observed along the x- axis, except when jumping at 0.55 m.
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Fig. 7. Peak effort during the landing phase when jumping on flat ground.
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Fig. 8. Maximal CoM accelerations during the landing phase when jumping
on flat ground. ‘CoMx max. acc’ and ‘CoMz max. acc’ separately denote the
maximal CoM acceleration along the forward and vertical directions.

TABLE I
TRAINING SETUP FOR Feedback AND Feedforward NNS.

Feedback NN Feedforward NN

Epochs 400 1000

Batch Size 500 2

Input Size 36 35

Output Size 12 5700

Normalization Layer yes yes
Learning Rate 0.001 0.001

Hidden Layer & Neuron number 2× 1024 2× 128

Activation Function ReLU ELU
Loss Function MSE MSE
Optimizer Adam Adam

TABLE II
LANDING ERRORS WITH DIFFERENT METHODS.

Feedback NN Feedforward NN MPC

Error in forward CoM 2.0±1.2cm 5.7±3.5cm 1.9±2.5cm

Error in vertical CoM 1.7±0.7cm 1.8±0.6cm 1.7±0.5cm

D. BC Performance in Simulation

We train the neural network with the Scikit− learn library
[29]. The network model and training setup are detailed in
Table I. In the training process, we adopted the input normal-
ization and the early stop mechanism to avoid overfitting.

1) Feedback vs. Feedforward NN: Before diving into the
details, we compare the landing precisions of different NNs,
where the robot performs 100 jumps of random length. Table II
reports the mean values and standard deviations of the forward
and vertical landing errors. In addition, landing errors when
using the MPC controller are also reported. As can be seen in
Table II, the Feedback NN results in a smaller mean MSE, i.e.
a higher landing precision, than Feedforward NN. Compared
with MPC, both NNs achieve decent landing precision.

2) NN Performance: Firstly, we plot the rotational effort,
peak effort and maximal CoM acceleration with the BC
schemes against the model-based approaches above. Fig. 6,
7, and 8 demonstrate that the Feedback NN basically achieves
a similar landing performance to that of VIC. However, the
Feedforward NN performs a little worse than VIC in reducing
CoM acceleration (see Fig. 8). We guess it is because of the
lack of feedback regulation.

Secondly, we compare the solving time needed by different
blocks, including the time to solve the SRB-based TO (the
second layer), the time to solve the MPC, and the time for
the NN to predict the result. To this end, the TO solver, MPC
solver and NN prediction are all implemented in C++.

Table III compares the mean, standard deviation and maxi-
mum solving/prediction time calculated on 100 random jumps.
We can see that the NN substantially outperforms the MPC
by at least an order of magnitude in each metric. The fast
computation with NN enables the quadruped robot to execute
continuous jumps without the necessity of pre-computation.
An example has been put in the attached video. In contrast,
even with the warm start for the SLIP-based TO, the large
time cost to solve the SRB-based TO makes it impractical to
run the optimization online.

Lastly, we evaluate the success rate of the BC approach,
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TABLE III
COMPUTING TIME NEEDED BY TO, MPC AND Feedback NN.

Time cost TO MPC Feedback NN

Mean ± Std. 30.5±15.6s 951±139µs 78±3µs

Max 80.1s 5325µs 389µs
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Fig. 9. The relationship between the jump length, the number of attempts
per length, and the forward landing error. The red marks a failed jump.

where a ‘successful’ motion means that the robot lands without
tipping over. Fig. 9 shows that the success rate of Feedback
NN is approximately 97.4%. And the robot achieves a fairly
small landing error in the middle of the distance range. A
comparison with other policies, such as those trained with a
smaller dataset and a clean dataset (without adding noise in
data collection), is also conducted, see the attached video.

E. Jumping in Unknown Situations
To demonstrate the scalability, we applied the proposed

method to unknown situations, including jumping across un-
even terrain and jumping onto an unknown slope. Here, we
present the jumping across uneven terrain, where the robot
jumps over the uneven ground with ±2mm height variation.

Fig. 10 shows that the model-based controller, i.e., MPC
in the stance phase, obtained the smallest landing error, while
Feedback NN realized decent tracking. In contrast, due to the
lack of a feedback mechanism, Feedforward NN resulted in
the highest landing error. In terms of the landing behavior
(Fig. 11 and Fig. 12), MPC generated the largest peak effort
and rotational effort while another three approaches achieved
smaller values, meaning softer landings. It is worth mentioning
that the Feedback NN resulted in the largest standard deviation
in most jumping distances, meaning a fluctuated performance.

Similar results are found when jumping onto unknown slope
terrain. Please check the attached video for more details.

F. Hardware Results
Although the Feedback NN was found to be superior

in achieving higher landing precision in simulation (Sec-
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Fig. 10. Forward landing error when jumping over uneven ground.
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Fig. 11. Peak effort after landing when jumping over uneven ground.
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Fig. 12. Rotational effort after landing when jumping over uneven ground.

tions V-D1 and V-E), Feedforward NN offers essential benefits
for hardware applications, particularly in terms of success rate
and interpretability. Also, the Feedforward NN enables the pre-
assessment of joint movements and CoM trajectories, which
is crucial for safe operations. Thus, this section proceeds with
the Feedforward NN for the hardware validation.

To adapt Feedforward NN for hardware execution, two
modifications were implemented

• Introduction of a low-pass filter on the predicted torques.
• Refining network using an additional dataset comprising

3000 simulated jumps.
In addition, 25 actual starting positions were recorded and

used to synthesize the additional dataset above for training,
working as data argumentation. Following these adjustments,
the robot was tested with jumps from 0.1m to 0.5m. In each
trial, we judge the landing when there is a jerky joint velocity,
without relying on the contact force measurement.

Each jump was repeated three times, and no failure oc-
curred. Table IV shows that the forward BC scheme could
suffer a larger landing error (e.g., when jumping at 0.1m and
0.5m). Nevertherless, Fig. 13 and Fig. 14 demonstrate that the
BC method reduced the peak effort, rotational effort, and peak
acceleration, achieving a softer landing.

One 0.4m forward jumping is depicted in Fig. 1. For other
jumping motions, including the comparison with MPC, please
check the attached video.

VI. CONCLUSION & DISCUSSION

This work realizes explosive jumping with a soft landing
by leveraging model-based and model-free approaches. We
started with dual-layer optimization. In addition, we incor-
porated variable impedance control to achieve a soft landing

TABLE IV
AVERAGE RESULTS DURING THE LANDING PHASE (HARDWARE)

0.1m 0.2m 0.3m 0.4m 0.5m

Landing error MPC [16] 9.4 4.3 3.5 3.3 6.4
[cm] BC 12.5 3.2 3.6 2.0 7.2
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Fig. 13. Peak effort and rotational effort after landing with hardware tests.
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Fig. 14. Maximal CoM accelerations after landing with hardware tests.

behavior. Experiments have demonstrated that the behavior
cloning approach could mitigate expert motions, realizing on-
the-fly execution of jumping with a soft landing. It should be
mentioned again that our approach does not rely on precise
contact force measurement or compliant mechanical design.

We found that the failure with the Feedback network usually
occurs in the flight or stance phase, as shown in the attached
video. To improve the success rate, we may include also joint
positions and velocities in output and add a low-gain feedback
controller to track joint motion. In addition, we may improve
the behavior cloning performance by using data argumentation
or adopting more advanced learning mechanisms, such as
transfer learning [30]. In the future, we are also keen to
combine behavior cloning with deep reinforcement learning
[31] to enhance jumping robustness across uneven terrain
while maintaining the soft landing. Furthermore, we will
extend it to 3D jumping. To this end, we will first generate the
3D jumping by reshaping the TO formulation following [16]
and then retrain the policy by considering more state inputs.

REFERENCES

[1] J. Ding, P. Posthoorn, V. Atanassov, F. Boekel, J. Kober, and
C. Della Santina, “Quadrupedal locomotion with parallel compliance:
E-go design, modeling, and control,” IEEE/ASME Trans. Mechatron.,
vol. 29, no. 4, pp. 2839–2848, 2024.

[2] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” in Proc. IEEE In. Conf. Robot. Autom., 2024, pp. 11 443–
11 450.

[3] J. Zhang, M. Li, J. Cao, Y. Dou, and X. Xiong, “Research on bionic
jumping and soft landing of single leg system in quadruped robot,” J.
Bionic Eng., vol. 20, no. 5, pp. 2088–2107, 2023.

[4] D. Liu, J. Wang, and S. Wang, “Force-sensorless active compliance
control for environment interactive robotic systems,” IEEE/ASME Trans.
Mechatron., 2024.

[5] M. Hutter, C. D. Remy, M. A. Hoepflinger, and R. Siegwart, “Efficient
and versatile locomotion with highly compliant legs,” IEEE/ASME
Trans. Mechatron., vol. 18, no. 2, pp. 449–458, 2012.

[6] Z. Song, L. Yue, G. Sun, Y. Ling, H. Wei, L. Gui, and Y.-H. Liu, “An
optimal motion planning framework for quadruped jumping,” in Proc.
IEEE Int. Conf. Intell. Robots Syst., 2022, pp. 11 366–11 373.
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