
1

Interactive Learning of Temporal Features for
Control

Rodrigo Pérez-Dattari1, Carlos Celemin1, Giovanni Franzese1, Javier Ruiz-del-Solar2 and Jens Kober1

I. INTRODUCTION

The ongoing industry revolution is demanding more flexi-
ble products, including robots in household environments or
medium scale factories. Such robots should be able to adapt
to new conditions and environments, and to be programmed
with ease. As an example, let us suppose that there are robot
manipulators working in an industrial production line that need
to perform a new task. If these robots were hard coded, it could
take days to adapt them to the new settings, which would stop
the production of the factory. Easily programmable robots by
non-expert humans would speed up this process considerably.

In this regard, we present a framework in which robots are
capable to quickly learn new control policies and state repre-
sentations, by using occasional corrective human feedback. To
achieve this, we focus on interactively learning these policies
from non-expert humans that act as teachers.

We present a Neural Network (NN) architecture, along
with an Interactive Imitation Learning (IIL) method, which
efficiently learns spatiotemporal features and policies from raw
high dimensional observations (raw pixels from an image), for
tasks in environments not fully temporally observable.

We denominate IIL as a branch of Imitation Learning (IL)
where human teachers provide different kinds of feedback to
the robots, like new demonstrations triggered by robot queries
[1], corrections [2], preferences [3], reinforcements [4], etc.
Most IL methods work under the assumption of learning from
perfect demonstrations; therefore, they fail when teachers only
have partial insights in the task execution. Non-expert teachers
could be considered all the users who are neither Machine
Learning (ML)/control experts, nor skilled to fully show the
desired behavior of the policy.

Interactive approaches like COACH [5], and some Inter-
active Reinforcement Learning (IRL) approaches [4], [6],
are intended for non-expert teachers, but are not completely
deployable for end-users. Sequential decision-making learning
methods (IL, IIL, IRL, etc.) rely on good state representations,
which make the shaping of the policy landscape simple,
and provide good generalization properties. However, this
requirement brings the need of experts on feature engineering
to pre-process the states properly, before running the learning
algorithms.

1R. Pérez-Dattari, C. Celemin, G. Franzese and J. Kober are with
the Department of Cognitive Robotics, Delft University of Technology,
Delft, The Netherlands e-mail: (r.j.perezdattari, c.e.celeminpaez, g.franzese,
j.kober)@tudelft.nl.

2J. Ruiz-Del-Solar is with the Department of Electrical Eng. and the
Advanced Mining Technology Center, Universidad de Chile, Chile e-mail:
jruizd@ing.uchile.cl.

Environment

Agent

Teacher

action !

feedback !

World Model

observation !

Fig. 1: Interactively shaping policies with agents that model
the world.

The inclusion of Deep Learning (DL) in IL (given its
popularity gained in the field of Reinforcement Learning (RL)
[7]), allows to skip pre-processing modules for the input of the
policies, since some architectures of NNs endow the agents
with intrinsic feature extraction capabilities. This has been
exhaustively tested in end-to-end settings [7]. In this regard,
DL allows non-expert humans to shape policies based only on
their feedback.

Nevertheless, in real-world problems, we commonly face
tasks wherein the observations do not explain the complete
state of the agent due to the lack of temporal information (e.g.
rates of change), or because the agent-environment interaction
is non-Markovian (e.g. dealing with occlusions). For these
cases, it is necessary to provide memory to the learning
policy. Recurrent Neural Networks (RNNs) can learn to model
dependencies on the past, and map them to the current outputs.
This recurrency has been used in RL and IL mostly using Long
Short-Term Memory (LSTM) networks [8].

Therefore, LSTMs are included in our NN architecture to
learn temporal features, which contain relevant information
from the past. However, DL algorithms require large amounts
of data, so as a way to tackle this shortcoming, State Repre-
sentation Learning (SRL) has been used to learn features more
efficiently [9], [10]. Considering that real robots and human
users have time limitations, as an SRL strategy, a model of
the world is learned to obtain state representations that make
the policy convergence possible within feasible training time

IEEE Robotics and Automation Magazine 2020

2

intervals (see Fig. 1).
The combination of SRL and the teacher’s feedback is a

powerful strategy to efficiently learn temporal features from
raw observations in non-Markovian environments.

The experiments presented in this paper show the im-
pact of the proposed architecture in terms of data effi-
ciency and policy final performance within the Deep COACH
(D-COACH) IIL framework [11]. Additionally, the experi-
mental procedure shows that the proposed architecture could
be even used with other IL methods, such as Data Aggre-
gation (DAgger) [12]. The code used in this paper can be
found at: https://github.com/rperezdattari/Interactive-Learning-
of-Temporal-Features-for-Control.

The paper is organized as follows: background on ap-
proaches used within our proposed method, and the related
work are presented in Section II. Section III describes the
proposed NN architecture along with the learning method.
Experiments and results are given in Section IV, and finally
the conclusions are drawn in Section V.

II. BACKGROUND AND RELATED WORK

Our method combines elements from SRL, IL and mem-
ory in NN models to build a framework that enables
non-expert teachers to interactively shape policies in tasks with
non-Markovian environments. These elements are introduced
hereunder.

A. Dealing with non-Markovian Environments

There are different reasons why a process could be par-
tially observable. One of them is when the state describes
time-dependent phenomena, but the observation only con-
tains partial information of it. For instance, velocities cannot
be estimated from camera images unless observations from
different time steps are combined. Other examples of time-
dependent phenomena are temporary occlusions or corrupted
communication systems between the sensors and the agent.

For these environments, the temporal information needs to
be implicitly obtained within the policy model. There are
two well-known approaches for adding memory to agents
in sequential decision-making problems when using NNs as
function approximators:

1) Observation stacking policies [13]: stacking the last N
observations (ot, ot−1, ...oN), and using this stack as the
input of the network.

2) Recurrent policies [14]: including RNN layers in the
policy architecture.

One of the main issues of observation stacking is that the
memory of these models is determined by the number of
stacked observations. The overhead increase rapidly for larger
sequences in high-dimensional observation problems.

In contrast, RNNs have the ability to model information
for an arbitrarily long amount of time [15]. Also, they do not
add input-related overheads, because when these models are
evaluated, they only use the last observation. Therefore, RNNs
have lower computational cost than observation stacking.
Given the more practical usage of recurrent models and their

capability of representing arbitrarily long sequences, in this
work we use RNN-based policies (with LSTM layers) in the
proposed NN architecture.

Nevertheless, the use of LSTMs has a critical disadvantage,
since its training is more complex and requires more data,
something very problematic when considering human teachers
and real systems. We will now introduce SRL, which helps to
accelerate the LSTM converge.

B. State Representation Learning

In most of the problems faced in robotics, the state st, which
fully describes the situation of the environment at time step
t, is not fully accessible from the robot’s observation ot.
As mentioned before, in several problems the observations
lack temporal information required in the state description.
Evenmore, these observations tend to be raw sensor mea-
surements that can be high-dimensional, highly redundant and
ambiguous. A portion of this data may even be irrelevant.

As a consequence, to successfully solve these problems a
policy needs to 1) find temporal correlations between several
consecutive observations, and 2) extract relevant features from
observations that are hard to interpret. However, finding rela-
tions between these large data structures with the underlying
phenomena of the environment, while learning controllers, can
be extremely inefficient. Therefore, efficiently building con-
trollers on top of raw observations requires to learn informative
low-dimensional state representations [16]. The objective of
SRL is to obtain an observer capable of generating such
representations.

A compact representation of a state is considered to be
suitable for control if the resulting state representation:

• is Markovian,
• has good generalization to unseen states, and
• is defined in low dimensional space (considerably lower

than the actual observation dimensionality) [9].
Along with the control objective function (e.g. reward

function, imitation cost function), other objective functions can
be used for SRL [10], namely:

• observation reconstruction,
• forward model or next observation prediction,
• inverse model,
• reward function, or
• value function.

C. Interactive Learning methods

This subsection introduces briefly two approaches for interac-
tively learning from human teachers while agents are executing
the task.

1) Data Aggregation: (HG-)DAgger

DAgger [12] is an IIL algorithm that aims to collect data with
online sampling. To achieve this, trajectories are generated by
combining the agent’s policy πθ and the expert’s policy. The
observations ot and the demonstrator’s corresponding actions

3

Algorithm 1 (HG-)DAgger

1: Require: demonstrations database D with initial demon-
strations, policy update frequency b

2: for t = 1,2,... do
3: if mod(t, b) is 0 then
4: update πθ from D
5: observe state ot
6: select action from agent or expert
7: execute action
8: feedback provide label a∗t for ot, if necessary
9: aggregate (ot, a

∗
t) to D

a∗t are paired and added to a database D, which is used for
training the policy’s parameters θ iteratively in a supervised
learning manner, in order to asymptotically approach the
expert’s policy. At the beginning of the learning process, the
demonstrator has all the influence over the trajectory made by
the agent; then, the probability of following the demonstrator’s
actions decays exponentially.

For working in real-world systems, with humans as
demonstrators, a variation of DAgger, Human-Gated DAg-
ger (HG-DAgger) [2], was introduced. In this approach, the
demonstrator is not expected to give labels over every action
of the agent, but only in places where s/he considers that
the agent’s policy needs improvement. Only these labels are
aggregated to the database and used for updating the policy.
Additionally, every time feedback is given by the human, the
policy will follow the provided action. As a safety measure, in
HG-DAgger the uncertainty of the policy over the observation
space is estimated; this element is omitted in this work.
Algorithm 1 shows the general structure of DAgger and HG-
DAgger.

2) Deep COACH

In this framework [11], humans shape policies giving occa-
sional corrective feedback over the actions executed by the
agents. If an agent takes an action that the human considers
to be erroneous, then s/he would indicate with a binary signal
ht, the direction in which the action should be modified.

This feedback is used to generate an error signal for updat-
ing the policy parameters θ. It is done in a supervised learning
manner with the cost function J using the mean squared error
and stochastic gradient descent. Hence, the update rule is:

θ ← θ − α · ∇θJ(θ). (1)

The feedback given by the human only indicates the sign
of the policy error. Its magnitude is supposed to be unknown,
since the algorithm works under the assumption that the user
is non-expert; therefore, s/he does not know the magnitude of
the proper action. Instead, the error magnitude is defined as
the hyperparameter e, that must be defined before starting the
learning process. Thus, the policy errort is defined by ht · e.

To compute a gradient in the parameter space of the policy,
the error needs to be a function of θ. This is achieved by
observing that:

Algorithm 2 Deep COACH

1: Require: error magnitude e, buffer update interval b
2: Init: B = [] # initialize memory buffer
3: for t = 1,2,... do
4: observe state ot
5: execute action at = πθ(ot)
6: feedback human corrective advice ht
7: if ht is not 0 then
8: error t = ht · e
9: atarget(t) = at + error t

10: update π using SGD with pair (ot, a
target
t)

11: update π using SGD with a mini-batch sampled
from B

12: append (ot, a
target
t) to B

13: if mod(t, b) is 0 then
14: update πθ using SGD with a mini-batch sampled

from B

errort(θ) = atarget
t − πθ(ot) (2)

where atarget
t is the incremental objective generated by the

feedback of the human atarget
t = at + errort and at is the

current output of the policy πθ. From Equations (1), (2),
and the derivative of the mean squared error, we can get the
COACH update step:

θ ← θ + α · errort · ∇θπθ. (3)

To be more data efficient and to avoid locally over-fitting
to the most recent corrections, Deep COACH has a memory
buffer that stores the tuple (ot, a

target
t) and replays this informa-

tion during learning. Additionally, when working in problems
with high-dimensional observations, an autoencoding cost is
incorporated in Deep COACH as an observation reconstruction
SRL strategy. In the Deep COACH pseudo-code (Algorithm
2) this SRL step is omitted. Deep COACH learns everything
from scratch in only one interactive phase, unlike other deep
interactive RL approaches [4], [6], which split the learning
process into two sequential learning phases. First, recording
samples of the environment for training a dimensionality
reduction model (e.g. an autoencoder); secondly, using that
model for the input of the policy network during the actual
interactive learning process.

III. LEARNING TEMPORAL FEATURES BASED ON
INTERACTIVE TEACHING AND WORLD MODELLING

In this section, the SRL NN architecture is described along
with the interactive algorithm for policy shaping.

A. Network Architecture for Extracting Temporal Features

For approaching problems that lack temporal information in
the observations, the most common solution is to model the
policy with RNNs as discussed in Section II-A; therefore, we
propose to shape policies that are built on top of RNNs, with

4

Policy

Transition

Model
 !"#$

!"

%"

%"

&'(

)"*$
+,-.

)"
+,-.

Fig. 2: Transition model and policy general structure.

occasional human feedback. In this work, we are using the
terms world model and transition model interchangeably.

IIL methods can take advantage of SRL for training with
other objective functions by 1) making use of all the experi-
ence collected in every time step, and 2) boosting the process
of finding compact Markovian embeddings. We propose to
have a neural architecture separated into two parts: 1) transi-
tion model, and 2) policy. The transition model is in charge
of learning the dynamics of the environment in a supervised
manner using samples collected by the agent. The policy part
is shaped only using corrective feedback. Figure 2 shows a
diagram of this architecture.

Learning to predict the next observation ot+1 forces a
Markovian state representation. This has been successfully
applied in RL [17]. RNNs can encode information from
past observations in their hidden state hLSTM

t . Thus, the
objective of the first part of the neural network is to learn
M(ot, at, h

LSTM
t−1) = õt+1, which, as a consequence, learns

to embed past observations in hLSTM
t . Additionally, when the

observations are high-dimensional (raw images), the agents
also need to learn to compress spatial information. To achieve
this, a common approach is to compress this information in
the latent space of an autoencoder.

For the first part of the architecture, we propose to use
the combination of an autoencoder with an LSTM to com-
pute the transition function model, i.e., predicting the next
high-dimensional observation. A detailed diagram of this ar-
chitecture can be seen in Figure 3.

In the second part of the architecture, the policy takes as
input, a representation of the state ŝt, that is generated inside
the transition model network. This representation is obtained
at the output of a fully-connected layer (FC3), that combines
the information of hLSTM

t−1 with the encoder compression of
the current observation e(ot). This is achieved by adding a
skipping connection between the output of the encoder and
the output of the LSTM.

B. Interactive Algorithm for Policy and World-Model Learn-
ing

In Algorithm 3, the pseudo-code of the state representation
learning strategy is presented. The hidden state of the LSTM
is denoted as hLSTM, and the human corrective feedback as

h. In every time step, a buffer D stores the samples of the
transitions with sequences of length τ (line 5). The agent
executes an action based on its last observation and the current
hidden state of the LSTM (line 6). This hidden state is updated
using its previous value and the most recent observation and
action (line 7). Line 8 captures the occasional feedback of
the teacher, which could be a relative correction when using
Deep COACH, or the corrective demonstration when using
HG-DAgger. Also, depending on the learning algorithm, the
policy is updated in different ways (line 9) .
D replays past transitions of the environment in order to

update the transition function model (line 11). This is done
following the bootstrapped random updates [14] strategy. This
model is updated every d time steps.

Algorithm 3 Online Temporal Feature Learning

1: Require: Policy update algorithm πupdate, training se-
quence length τ , model update rate d

2: Init: D = []
3: for t = 1,2,... do
4: observe observation ot
5: append (ot−1, ..., ot−τ , at−1, ..., at−τ , ot) to D
6: execute action at = πθ(ot, h

LSTM
t−1)

7: compute hLSTM
t from M(ot, at, h

LSTM
t−1)

8: feedback human feedback ht
9: call πupdate(ot, at, ht)

10: if mod(t, d) is 0 then
11: update M using SGD with mini-batches of se-

quences sampled from D

IV. EXPERIMENTS AND RESULTS

In this section, experiments for validating the proposed neural
network architecture and the interactive training algorithm are
presented. In order to obtain a thorough evaluation, different
experiments are carried out to compare and measure the
performance (return i.e. sum of rewards) of the proposed
components. Initially, the network architecture based on SRL
is evaluated in an ablation study, aiming to quantify the data
efficiency improvement added by its different components.
Then, using the proposed architecture, D-COACH is compared
with (HG-)DAgger using simulated tasks and simulated teach-
ers (oracles). The third set of experiments is carried out with
human teachers in simulated environments, again comparing
different learning methods. Finally, a fourth set of validation
experiments is carried out in real systems with human teachers.
Most of the results are presented in this paper; however, some
of them are in the supplementary material, along with more
detailed information on the experiments

Two real and three simulated environments with different
complexity levels were used, all of them using raw images as
observations. The simulated environments are Mountain-Car,
Swing-Up Pendulum, and Car Racing, whose implementations
are taken from OpenAI Gym [18]. These simulations provide
rendered image frames as observations of the environment.
These frames visually describe the position of the system but

5

Convolution:

Deconvolution:

Reshape:

Normalization:

Fully-connected:

Recurrent:

Identity:

Concatenate:

 !
" !#$

Encoder Decoder

Policy

%(!)

"!

"!

C1

FC5 FC6 FC7

Transition Model

FC4

Memory

FC2

R1 FC3

CC1

FC1
C2 C3

DC1 DC2 DC3
N1 N2

N3 N4

#$%

CC2

&!
'(*+

&!,-
'(*+

Fig. 3: Proposed neural network architecture. Convolutional and recurrent (LSTM) layers are included in the transition model
in order to learn spatiotemporal state representations. The estimated state ŝt is used as input to the policy, which is a fully-
connected NN.

not its velocity, which is necessary to control the system.
The experiments on the real physical systems consist of a
Swing-Up Pendulum and a setup for picking oranges on a
conveyor belt with a 3 degrees of freedom (DoF) robot arm.

The metrics used for the comparisons are the achieved final
policy performance, and the speed of convergence, which is
very relevant when dealing with both, real systems and human
teachers. A video showing most of these experiments can be
found at: youtu.be/4kWGfNdm21A.

A. Ablation study

In this ablation study, the architecture of the network is
the independent variable of the study. Three independent
comparisons were carried out using DAgger, HG-DAgger and
D-COACH. The training sessions were run using a simulated
teacher to avoid any influence of human factors.

Three different architectures were tested for learning the
policy from an oracle. The structure of the networks is
introduced below:

1) Full network: Proposed architecture.
2) Memoryless state representation learning (M-less

SRL): Similar to the full network, but without using
recurrence between the encoder and decoder. The au-
toencoder is trained using the reconstruction error of the
observation.

3) Direct policy learning (DPL): Same architecture as in
the full network, but without using SRL, i.e., not training
the transition model. The encoding, recurrent layers and
policy are trained only using the cost of the policy.

The ablation study is done on a modified version of the Car
Racing environment. Normally, this environment provides an
upper view of a car in a racing track. In this case, we occluded
the bottom half of this observation, such that the agent is not
able to precisely know its position in the track. This position
can be estimated if past observations are taken into account.
As a consequence, this is an appropriate setting for making
a comparison of different neural network architectures. Table

I shows the different performances obtained by the learning
algorithms when modifying the structure of the network. These
results show a normalized averaged return over 10 repetitions
for each experiment, in which 5 evaluations were carried for
each one of these repetitions.

TABLE I: Performance (return) comparison of different learn-
ing methods in the Car Racing problem. Returns were nor-
malized with respect to the best performance (DAgger Full).

FULL M-less SRL DPL
D-COACH 0.97 0.76 0.68
DAgger 1.00 0.87 0.96
HG-DAgger 0.89 0.69 0.90

As expected, DAgger with the Full architecture obtained
the best performance, and given that it receives new samples
every time step, it was robust against the changes in the
architecture, even when it did not have memory. On the other
hand, D-COACH was very sensitive to the changes in the
architecture, especially with the DPL architecture. This shows
how the Full model is able to enhance the performance of the
agents in problems where temporal information is required. It
even makes Deep COACH perform almost as well as DAgger,
despite that the former does not require constant and perfect
teacher feedback. Finally, HG-DAgger was more robust than
D-COACH in the DPL case, but its performance with the full
model was not as good.

B. Simulated tasks with simulated teachers

In the second set of experiments, a comparison between
the algorithms DAgger, HG-DAgger, and Deep COACH was
carried out using the proposed Full network architecture. To
keep the experiments free from human factor effects, the
teaching process was, once again, performed with simulated
teachers. The methods were tested in the simulated problems
Mountain Car (in the supplementary material), and Swing-Up
Pendulum. A mean of the return obtained over 20 repetitions

6

0 1000 2000 3000 4000 5000 6000 7000
Time step

−3500

−3000

−2500

−2000

−1500

−1000

−500

R
et
ur
n

Simulated Swing-Up Pendulum Learning Curve

Oracle

Random policy

D-COACH

DAgger

HG-DAgger

0 1 2 3 4 5 6 7 8 9 10 11
Time (min)

Fig. 4: D-COACH and (HG-)DAgger comparison in the
Swing-Up Pendulum problem using a simulated teacher.

is presented for these experiments, along with the maximum
and minimum values of these distributions.

Swing-Up Pendulum

In the case of the Swing-Up Pendulum, the results are very
different for both DAgger agents (see Fig. 4). Both have
a higher rate of improvement than Deep COACH during
the first minutes, when the policy is learning the swinging
behavior. Since the swinging part requires large actions, the
improvement with Deep COACH is slower. However, once
the policy is able to swing the pendulum up, the second part
of the task is to keep the balance in the upright position,
which requires fine actions. It is at this point when learning
becomes easier for the Deep COACH agent, which obtains a
constant and faster improvement than the HG-DAgger agent,
even reaching a higher performance. In Fig. 4, the expected
performance upper bound is showed with a black dashed line,
which is the return obtained by the simulated teacher. The
purple dashed line shows the performance of a random policy,
which is the expected lower bound.

C. Simulated tasks with human teachers

The previous experiments give insights into how the policy
architectures and/or the learning methods perform when im-
itating an oracle. Most IL methods are intended for learning
from any source of expert demonstrations. It does not have to
be a human necessarily; it can be any type of agent. However,
the scope of this work is on learning from non-expert human
teachers, who are complex to model and simulate. Therefore,
conclusions have to be based on results that also include
validation with real users.

Experiments with the Mountain-Car (in the supplementary
material), and the Swing-Up Pendulum were run with 8 human
teachers. In this case, the classical DAgger approach is not
used, since, as discussed in Section II-C, it is not specifically
designed for human users. Instead, HG-DAgger is validated.

0 2000 4000 6000 8000 10000
Time step

−3500

−3000

−2500

−2000

−1500

−1000

−500

R
et
ur
n

Simulated Swing-Up Pendulum Learning Curve w/ Human Teachers

Human (teleoperation)

Random policy

D-COACH

HG-DAgger

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time (min)

Fig. 5: Simulated Swing-Up Pendulum learning curve with
human teachers

Swing-Up Pendulum

This task is relatively simple from a control theory point
of view. Nevertheless, it is quite challenging for humans to
tele-operate the pendulum, due to its fast dynamics. Indeed,
the participants were not able to successfully tele-operate
the agent; therefore, unlike the Mountain-Car task, we could
consider the participants as non-experts on the task.

Fig. 5 shows the results of this experiment, which are
similar to the ones presented in Fig. 4. At the beginning, Deep
COACH has a slower improvement when learning to swing
up; however, it learns faster than HG-DAgger when the policy
needs to learn the accurate task of balancing the pendulum.
For the users, it is more intuitive and easier to improve the
balancing with the relative corrections of Deep COACH than
with the perfect corrective demonstrations of HG-DAgger,
as they do not need to know the right action, rather just
the direction of the correction. Unlike the performance of
the simulated teacher depicted in Fig. 4, this plot shows
the performance of the best human teacher tele-operating
the pendulum with the same interface used for the teaching
process. It can be seen that using both agents allowed to obtain
policies that outperform the non-expert human teachers.

All the policies trained with Deep COACH were able to
balance the pendulum, whereas with HG-DAgger the success
rate was the half. Additionally, after the experiment, the
participants were queried about what learning strategy they
preferred. Seven out of eight expressed preference for Deep
COACH.

D. Validation on physical systems with human teachers

The previous experiments performed comparison studies of the
NN architectures and the learning methods under controlled
conditions in simulated environments. In this section, Deep
COACH is validated with human teachers and real systems in
two different tasks: 1) a real Swing-Up Pendulum, and 2) a
fruits classifier robot arm.

The real Swing-Up pendulum is a very complex system

7

Fig. 6: Orange selector experimental set-up. 1) conveyor belt,
2) “orange” samples, 3) frame observed by the camera, 4)
RGB camera, and 5) 3 DoF robot arm.

for a human to tele-operate. Its dynamics are faster than the
simulated one of OpenAI Gym used in the previous experi-
ments. The supplementary material provides more details of
this environment along with the learning curve of the agents
trained by the participants of this validation experiment. Those
results, along with the video, show that non-expert teachers
can manage to teach good policies.

Orange selector with a robot arm

This set-up consists of a conveyor belt transporting “pears”
and “oranges”, a 3 DoF robot arm located over the belt, and
an RGB camera with a top view of the belt. The image of
the camera does not capture the robot arm. The robot has
to select oranges with the end effector, but avoid pears. The
robot does not have any tool like a gripper or vacuum gripper
to pick up the oranges. Therefore, in this context, we consider
a successful selection of an orange when the end effector
intersects the object. The performance of the learning policy
is measured using two indices: 1) rate of oranges successfully
selected, and 2) rate of pears successfully rejected.

The observations obtained by the camera are from a differ-
ent region of the conveyor belt than where the robot is acting.
Therefore observations cannot be used for compensating the
robot position in the current time step, rather they are mean-
ingful for future decisions. In other words, the current action
must be based on past observations. Indeed, the delay between
the observations and its influence on the actions is around 1.5
seconds. This delay is given by the difference between the
time when the object gets out from the camera range and the
time it reaches the robot’s operating range. This is why this
task requires to learn temporal features for the policy.

The problem is solved by splitting it into two sub-tasks
which are trained separately:

0 2000 4000 6000 8000 10000 12000 14000
Time step

0.0

0.2

0.4

0.6

0.8

1.0

S
el
ec
ti
on
/R

ej
ec
ti
on

S
uc
ce
ss

R
at
e

Orange Selector Learning Curve

Orange Selection

Pear Rejection

0 5 10 15 20 25 30 35 40 45 50
Time (min)

Fig. 7: Orange selection/pear rejection learning curve.

1) Orange selection: The robot must intercept the orange
coordinate with the end effector, right when it passes
below the robot.

2) Pear rejection: The robot must classify between or-
anges and pears, so when a pear is approaching under
the robot, the end effector should be lifted far from the
belt plane, otherwise it should get close.

These two sub-tasks can be trained sequentially. The orange
selection is trained initially, with a procedure in which there
are some oranges being transported by the belt with fixed
positions, while some others are placed randomly. This in
order to avoid over-fitting of the policy to specific sequences.

When the robot is able to track the oranges in its reach,
the pear rejection learning starts. For that, pears are placed
randomly throughout the sequences of oranges, and the human
teacher advises corrections on the robot movement in order to
make the end effector move away from the pears when they
are in the operation region of the robot.

Fig. 7 depicts the average learning curves for this task after
5 runs of the teaching process. It is possible to see that the
pear rejection sub-task is learned within 20 minutes with 100%
success, while the orange selection is a harder sub-task that
only reaches around 80% success after 50 minutes. Effectively,
combining the two sub-tasks, the performance of the learned
policies is given only by the success of the orange selection,
since the pear rejection was perfectly attained in all the runs
executed for this experiment.

V. CONCLUSION

This paper has introduced and validated a SRL strategy for
learning policies interactively from human teachers in envi-
ronments not fully temporally observable. Results show that
when meaningful spatiotemporal features are extracted, it is
possible to teach complex end-to-end policies to agents using
just occasional, relative, and binary corrective signals. Even
more, these policies can be learned from teachers who are not
skilled to execute the task.

The evaluations with the Data Aggregation approaches and
Deep COACH depict the potential of this kind of architecture

8

to work on different IIL methods. Especially in methods based
on occasional feedback, which are intended to reduce the
human workload.

The comparative results between HG-DAgger and Deep
COACH with non-expert teachers showed that with the former,
the policy will remain biased with mistaken samples even
if the teacher makes sure of not providing more wrong
corrections (given that it works with the assumption of expert
demonstrations); hence, it makes harder to refine the policy.
On the other hand, Deep COACH proved to be more robust
to mistaken corrections given by humans, since all the non-
expert users were able to teach tasks that they were not able
to demonstrate.

The previous mentioned shortcoming of DAgger algorithms
open possibilities for future works, which are intended to study
how to deal with databases with mistaken examples. Another
field of study is the one of data-efficient movement generation
in animation [19], which combined with our method, would
make it possible to learn (non-)periodic movements using spa-
tiotemporal features and IIL. Challenges such as the generation
of smooth, precise, and stylistic movements (i.e. dealing with
high-frequency details [20]) could be also addressed.

ACKNOWLEDGMENT

This research has been funded by the Netherlands Organization
for Scientific Research (NWO) project FlexCRAFT, grant
number P17-01, by the ERC Stg TERI, project reference
#804907, by FONDECYT project [1201170], and by CON-
ICYT project [AFB180004].

REFERENCES

[1] S. Chernova and M. Veloso, “Interactive policy learning through
confidence-based autonomy,” Journal of Artificial Intelligence Research,
vol. 34, pp. 1–25, 2009.

[2] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. Kochenderfer, “Hg-
dagger: Interactive imitation learning with human experts,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 8077–8083.

[3] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,
“Deep reinforcement learning from human preferences,” in Advances in
Neural Information Processing Systems, 2017, pp. 4299–4307.

[4] W. B. Knox and P. Stone, “Interactively shaping agents via human rein-
forcement: The TAMER framework,” in Fifth International Conference
on Knowledge Capture. ACM, 2009, pp. 9–16.

[5] C. Celemin and J. Ruiz-del Solar, “An interactive framework for learning
continuous actions policies based on corrective feedback,” Journal of
Intelligent & Robotic Systems, pp. 1–21, 2018.

[6] J. MacGlashan, M. K. Ho, R. Loftin, B. Peng, G. Wang, D. L.
Roberts, M. E. Taylor, and M. L. Littman, “Interactive learning from
policy-dependent human feedback,” in 34th International Conference
on Machine Learning - Volume 70. JMLR. org, 2017, pp. 2285–2294.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] W. Böhmer, J. T. Springenberg, J. Boedecker, M. Riedmiller, and
K. Obermayer, “Autonomous learning of state representations for con-
trol: An emerging field aims to autonomously learn state representations
for reinforcement learning agents from their real-world sensor observa-
tions,” KI-Künstliche Intelligenz, vol. 29, no. 4, pp. 353–362, 2015.

[10] T. Lesort, N. Díaz-Rodríguez, J.-F. Goudou, and D. Filliat, “State
representation learning for control: An overview,” Neural Networks, vol.
108, pp. 379–392, 2018.

[11] R. Pérez-Dattari, C. Celemin, J. Ruiz-del Solar, and J. Kober, “Contin-
uous control for high-dimensional state spaces: An interactive learning
approach,” in 2019 International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2019, pp. 7611–7617.

[12] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Fourteenth
International Conference on Artificial Intelligence and Statistics, 2011,
pp. 627–635.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[14] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs,” in 2015 AAAI Fall Symposium Series, 2015.

[15] G. Lample and D. S. Chaplot, “Playing fps games with deep re-
inforcement learning,” in Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[16] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy
evolution,” in Advances in Neural Information Processing Systems, 2018,
pp. 2450–2462.

[17] A. Zhang, H. Satija, and J. Pineau, “Decoupling dynamics and reward
for transfer learning,” arXiv preprint arXiv:1804.10689, 2018.

[18] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI gym,” arXiv preprint
arXiv:1606.01540, 2016.

[19] I. Mason, S. Starke, H. Zhang, H. Bilen, and T. Komura, “Few-
shot learning of homogeneous human locomotion styles,” in Computer
Graphics Forum, vol. 37, no. 7, 2018, pp. 143–153.

[20] H. Zhang, S. Starke, T. Komura, and J. Saito, “Mode-adaptive neural
networks for quadruped motion control,” ACM Transactions on Graphics
(TOG), vol. 37, no. 4, pp. 1–11, 2018.

1

Supplementary Material: Interactive Learning of
Temporal Features for Control

Rodrigo Pérez-Dattari1, Carlos Celemin1, Giovanni Franzese1, Javier Ruiz-del-Solar2 and Jens Kober1

The scope of this Supplementary Material is to provide
some other details of the experiments, that are not present in
the main document [1]. Next section is making a brief recap
of the method. The additional information is divided in three
main parts:

• Ablation study: Some more details are added about the
environment of the Racing Car.

• Simulated tasks with simulated/human teachers:
where some specific details are added on the experimental
procedure along with some results.

• Validation on real robot tasks with human teach-
ers: where experiments and results on a real inverted
pendulum are described. Some more details about the
architecture and the set-up of the orange selector and pear
rejection are also introduced.

I. RECAP OF THE METHOD

The role of the human as a teacher is to observe the decision-
making strategy of the agent, and give corrections over the
agent’s actions when necessary. The policy is updated with
these corrections. To do this in an efficient way, a model
of the world is learned simultaneously with the policy (see
Fig. 1). Learning this model forces to pre-processes the high-
dimensional observations to create a state representation of
the environment. This representation of the state contains
spatiotemporal information that the agent can use to make
decisions.

Policy

Transition

Model
 !"#$

!"

%"

%"

&'(

)"*$
+,-.

)"
+,-.

Fig. 1: Transition model and policy general structure.

1R. Pérez-Dattari, C. Celemin, G. Franzese and J. Kober are with
the Department of Cognitive Robotics, Delft University of Technology,
Delft, The Netherlands e-mail: (r.j.perezdattari, c.e.celeminpaez, g.franzese,
j.kober)@tudelft.nl.

2J. Ruiz-Del-Solar is with the Electrical Engineering Department and the
AMTC, University of Chile, Santiago, Chile e-mail: jruizd@ing.uchile.cl.

II. ADDITIONAL INFORMATION OF EXPERIMENTS AND
RESULTS

The metrics used for the comparisons are the final policy’s
performance achieved and the speed of convergence, which
is very relevant when dealing with real systems and human
teachers. In every learning curve, a mean of the return obtained
over 20 repetitions for every experiment is presented, along
with the maximum and minimum values of these distributions.
The performance was measured in the simulated environments
with the objective functions included in OpenAI Gym. For the
real pendulum, a similar function to the one implemented in
OpenAI Gym was used, while for the task with the robot arm,
the success rate was used.

For the experiments with simulated teachers,
high-performance policies trained by expert teachers
were used as oracles for providing the corrections. These
policies have performances in the level of the state of the art
(performance plotted in the figures). In Deep COACH, the
corrections h are the sign of the relative change advised by
the teacher. Therefore, to compute these binary corrections,
the simulated teacher computes h = sign(ateacher − aagent)
for each of the dimensions composing the action vector,
wherein ateacher is the action computed by the policy of the
teacher and aagent is the action computed by the learning
policy, as it has been implemented in [2], [3]. The frequency
of the corrections given by the simulated human teacher are
controlled with a probability that is reducing with the time.

For the experiments in which actual human teachers par-
ticipated correcting policies, the corrections were provided
through a keyboard. For each action dimension, two keys were
designated, so the user could advise increase or decrease, in
each of the axis.

A. Neural Network Architecture Details

Fig. 3 of the main document [1] shows the structure of the
proposed NN architecture. The hyperparameters of each of
these layers are shown in Tables 1 and 2.

B. Additional details about the environment in the Ablation
study

All the results obtained in this study are shown in the main
document [1]. The comparisons were carried out only with the
Car Racing problem of OpenAI Gym. In this environment,
the agent has three action dimensions which are: steering,
acceleration, and brake.

2

Layer Activation Filters Filter size Stride
C1 ReLU 16 3× 3 2
C2 ReLU 8 3× 3 2
C3 sigmoid 4 3× 3 2
DC1 ReLU 8 3× 3 2
DC2 ReLU 16 3× 3 2
DC3 sigmoid 1 3× 3 2

TABLE I: Hyperparameters of convolutional and deconvolu-
tional layers.

Layer Activation N◦ neurons
FC1 tanh 256
FC2 tanh 256
FC3 tanh 1000
FC4 tanh 256
FC5 ReLU 1000
FC6 ReLU 1000
FC7 tanh Task action dimension
R1 LSTM activations hLSTM = 150

TABLE II: Hyperparameters of fully connected and recurrent
layers.

As mentioned in the main document [1], the bottom half
of the frame is occluded in order to force the agent to
take decisions based in past observations. An example of the
occluded frame is shown in Fig. 2, the current position of the
car in the road is not observed by the learning policy; however,
the entire frame is observed by the policy used as simulated
teacher. Therefore, the corrections are based on appropriate
actions with respect to the real state of the environment.

(a) Original frame (b) Occluded frame

Fig. 2: Original frame of the Car Racing environment, on the
left. Occluded frame used as observation in the network, on
the right.

C. Simulated tasks with simulated teachers

The Mountain Car and the Swing-Up Pendulum environments
originally provide, at each time step, their low-dimensional
explicit state. These are the position and velocity of the car in
the x axis, and the angle and angular velocity of the pendulum,
respectively. In order to obtain a high-dimensional observation
(raw image) we have modified the source code, such that
the environment returns an array with the RGB frame that
is rendered.

0 250 500 750 1000 1250 1500 1750
Time step

0

20

40

60

80

100

R
et
ur
n

Mountain Car Learning Curve

Teacher

Random policy

D-COACH

DAgger

HG-DAgger

0 0.5 1 1.5 2
Time (min)

Fig. 3: D-COACH and DAgger comparison in the Mountain
Car problem using a simulated teacher.

Mountain Car

The action of the agent is the force applied in order to move
the Car. It is known that the optimal solution for this task is
a bang-bang controller (using the extreme actions -1 or 1).
Therefore, the correct actions given by the oracle are very
different from the initial policy in the whole state space. This
makes it easier to perform abrupt changes when updating the
policy for DAgger-like agents than for Deep COACH, because
the latter performs smaller steps based on incremental and
relative corrections (corrections are in the direction of the
oracle’s action, but not directly the actual action).

As it can be seen in Fig. 3, as expected, the learning
convergence is faster for DAgger, followed by HG-DAgger,
whereas Deep COACH is the slowest. DAgger converges faster
than its modified version, HG-DAgger, because the former
trains the policy with corrections provided by the oracle during
every time step, which is most of the times not feasible
when teaching with human users. All agents reach the oracle’s
performance at the end of the learning process.

D. Simulated tasks with human teachers

The validation was executed with 8 participants between 20
and 30 years. In the experiments, the users observed the
desired performance of the agent, they received instructions
on how to interact with each kind of agent, and they had the
chance to practice with the learning agent before recording
results, in order to get used to the role of teacher. The users
interact with the learning agent using a keyboard. Users correct
the policies until they consider they cannot improve them
anymore, or until a maximum duration of the training session
of 500 seconds (8.33 minutes). The episodes of the tasks had
a duration of 20 seconds, which for Mountain Car means the
maximum duration, if the goal is not reached, whereas for the
pendulum this is constant. The duration of the time steps is
0.05 s.

3

0 250 500 750 1000 1250 1500 1750 2000
Time step

−25

0

25

50

75

100

R
et
ur
n

Mountain Car Learning Curve w/ Human Teachers

Human

Random policy

D-COACH

HG-DAgger

0 1 2
Time (min)

Fig. 4: Mountain Car learning curve with human teachers

Mountain Car

This task is very simple, since users understand properly how
to tele-operate the agent, therefore, we could state that for this
task, the teachers are always experts.

Results in Fig. 4 are similar to the ones observed in Fig. 3 in
Section II-C, wherein at the beginning HG-DAgger improves
way faster. However, in this case HG-DAgger gets stuck and
is outperformed by Deep COACH after 20 seconds. This
happens as, despite the fact that the teachers are considered
experts, they could sometimes provide mistaken or ambiguous
corrections. These inconsistencies remain permanently in the
database, so it is hard for the user to fix the generated error.

E. Validation on physical systems with human teachers

1) Real Swing-Up Pendulum

This system is similar to the one used previously from OpenAI
Gym, although in this set-up the dynamics are even much
faster, and the actions are voltages instead of torques. In this
environment a camera is set in front of the pendulum to obtain
observations similar to the simulated environment, as it is
shown in Fig. 6, wherein the camera is in the bottom, aligned
with the pendulum. The observation was down-sampled to 32
× 32 pixels images, while for all the other tasks the down-
sampling was to 64 × 64 pixels. An example of the actual
observation of the camera is in Fig. 7, where it is possible to
see the input of the NN (down sampled image), along with the
prediction of the observation in t + 1, with a model that has
been trained with the proposed architecture. In this example,
it is interesting to observe that the pendulum was rotating
clockwise, therefore the prediction shows the weight of the
pendulum in a lower position.

Fig. 5 shows the learning curve of 10 runs. In average,
the users manage to teach a policy able to balance after
29 episodes, and they keep on improving the policy during
the subsequent episodes. Preliminary tests showed that the
sampling time needs to be reduced to 0.025 s to be able to
control the system.

0 5000 10000 15000 20000 25000
Time step

−1000

−800

−600

−400

−200

0

R
et
ur
n

Real Swing-Up Pendulum Learning Curve

D-COACH

0 1 2 3 4 5 6 7 8 9 10 11
Time (min)

Fig. 5: Real Swing-Up Pendulum learning curve.

Fig. 6: Real Swing-Up Pendulum Setup. 1) Pendulum; 2) RGB
camera.

2) Orange selector with a robot arm

As mentioned in the main document [1], this problem is
composed by two sub-tasks, that are sequentially trained. In
the experiments, at the beginning when learning the Orange
selection, the teachers corrected the policy only in order to
make the robot to move the end-effector over the horizontal
plane. Therefore, the transition model along with a controller
in charge of intercepting the oranges with the end-effector are
learned in the first stage. Then, in order to learn the second
sub-task (Pear rejection) composing the problem, the already
learned transition model is reused in the training process of a
second controller that either moves the end-effector close to
the belt or far when a pear is detected. These two controllers
work in parallel since their actions are over different joints.

In the associated video it is shown examples of the actual
images that go to the input of the network, along with the
prediction of the next observation. However due to the velocity
of the video it is not easy to see that the predicted oranges
are slightly shifted. In Fig. 8 are shown examples of three
different oranges crossing the field of view of the camera.

4

(a) Network input (b) Observation prediction

Fig. 7: Downsampled observation of the camera, which is the
input of the Network, on the left. Next observation prediction,
on the right.

(a) Network input

(b) Observation prediction

Fig. 8: Examples of images in the input of the Network, on
the top. Observation predicted for the next time step by the
learned transition model, on the bottom.

The examples are input-output pairs of the transition model.
The oranges moved by the belt are observed by the camera
while crossing from the top to the bottom of the field of view.
It could be seen that the predicted oranges are in a lower
position with respect to the position observed in the input, i.e.
the model learns to predict the movement of the belt.

REFERENCES

[1] R. Pérez-Dattari, C. Celemin, G. Franzese, J. Ruiz-del Solar, and J. Kober,
“Interactive learning of temporal features for control,” Robotics and
Automation Magazine (RAM), 2020.

[2] R. Pérez-Dattari, C. Celemin, J. Ruiz-del Solar, and J. Kober, “Contin-
uous control for high-dimensional state spaces: An interactive learning
approach,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 7611–7617.

[3] C. Celemin and J. Ruiz-del Solar, “An interactive framework for learning
continuous actions policies based on corrective feedback,” Journal of
Intelligent & Robotic Systems, pp. 1–21, 2018.

