
Towards Motor Skill Learning for Robotics

Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer

Abstract Learning robots that can acquire new motor skills and refine existing one
has been a long standing vision of robotics, artificial intelligence, and the cognitive
sciences. Early steps towards this goal in the 1980s made clear that reasoning and
human insights will not suffice. Instead, new hope has been offered by the rise of
modern machine learning approaches. However, to date, it becomes increasingly
clear that off-the-shelf machine learning approaches will not suffice for motor skill
learning as these methods often do not scale into the high-dimensional domains
of manipulator and humanoid robotics nor do they fulfill the real-time requirement
of our domain. As an alternative, we propose to break the generic skill learning
problem into parts that we can understand well from a robotics point of view. After
designing appropriate learning approaches for these basic components, these will
serve as the ingredients of a general approach to motor skill learning. In this paper,
we discuss our recent and current progress in this direction. For doing so, we present
our work on learning to control, on learning elementary movements as well as our
steps towards learning of complex tasks. We show several evaluations both using
real robots as well as physically realistic simulations.

1 Introduction

Despite an increasing number of motor skills exhibited by manipulator and hu-
manoid robots, the general approach to the generation of such motor behaviors
has changed little over the last decades [1]. The roboticist models the task as ac-
curately as possible and uses human understanding of the required motor skills in
order to create the desired robot behavior, as well as to eliminate all uncertainties
of the environment. In most cases, such a process boils down to recording a desired

Max Planck Institute for Biological Cybernetics
Department of Empirical Inference & Machine Learning, 72076 Tübingen, Germany
e-mail: {jrpeters,muelling,kober,duy,oliverkro@tuebingen.mpg.de}

1

2009 International Symposium on Robotics Research (ISRR), Invited Paper

2 Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer

trajectory in a pre-structured environment with precisely placed objects. If inaccura-
cies remain, the engineer creates exceptions using human understanding of the task.
Such highly engineered approaches are feasible in highly structured industrial or
research environments. However, it is obvious that if robots should ever leave fac-
tory �oors and research environments, we will need to reduce the strong reliance on
hand-crafted models of the environment and the robots. Instead, we need a general
framework which allows us to use compliant robots that are designed for interaction
with less structured and uncertain environments in order to reach domains outside
industry. Such an approach cannot rely solely on human knowledge but instead has
to be acquired from and adapted to data generated both by human demonstrations
of the skill as well as trial and error of the robot.

The tremendous progress in machine learning over the last decades offers us the
promise of less human-driven approaches to motor skill acquisition. However, de-
spite offering the most general methods for data-driven acquisition of motor skills,
generic machine learning techniques (which do not rely on an understanding of
motor systems) often do not scale into the realt-time domain of manipulator or hu-
manoid robotics due to their high dimensionality. Therefore, instead of attempting
to apply a standard machine learning framework to motor skill aquisition, we need
to develop approaches suitable for this particular domain. To cope with the com-
plexities involved in motor skill learning, the inherent problems of task representa-
tion, learning and execution should be addressed separately in a coherent framework
employing a combination of imitation, reinforcement and model learning. The ad-
vantage of such a concerted approach is that it allows the separation of the main
problems of motor skill acquisition, refinement and control. Instead of either hav-
ing an unstructured, monolithic machine learning approach or creating hand-crafted
approaches with pre-specified trajectories, we are capable of acquiring skills from
demonstrations and represented as policies which become refined by trial and error
(as discussed in Section 4). Additionally, we can learn how to activate and adapt the
task-related parameters in order to achieve more complex tasks as discussed in Sec-
tion 5. Finally, using learning-based approaches, we can achieve accurate control
without accurate analytical models of the complete system as discussed in Section
3.

2 Towards a General Skill Learning Framework

In order to create a motor skill learning framework that is sufficiently general, we
need to discuss three basic components for such an approach. For this, a general rep-
resentation is required that can encapsulate elementary and frequently used motions.
We need to be able to learn these motions efficiently, and a supervisory module must
be able to use these basic elements. Finally, execution is required that can adapt to
changes in the environment. The resulting control architecture is shown in Figure 1.
Let us now brie�y discuss each of these aspects in the remainder of this section.

Towards Motor Skill Learning for Robotics 3

Action
Motor

Commands

Desired
State

Task Parameters
and Activation

State Information

Learning
Signal

Execute

Supervisor
Motion

Primitives
Motion

Primitives
Motion

Primitives

State

Primitives

ExecuteExecute

SupervisorSupervisor
LearningLearning

PrimitivesPrimitives

Teacher

Fig. 1 This figure illustrates the generic components of a motor skill learning system, i.e., the su-
pervisor system activates motor primitives and sets their task parameters. These elementary move-
ments are executed by a learned motor control law. The learning signals are provided with the
help of a teacher and may be (a) a demonstration for imitation, (b) a reward or punishment for
self- improvement or (c) a model error if it can be observed. In this paper, we focus on learning
primitives and execution but also discuss ongoing work on learning to incorporate context in the
supervisor layer.

Motor Primitives. For the representation of motor skills, we can rely on the
insight that humans, while being capable of performing a large variety of compli-
cated movements, restrict themselves to a smaller amount of primitive motions [3].
As suggested by Ijspeert et al. [4], such primitive movements can be represented
by nonlinear dynamic systems. As a result, we may represent elementary tasks by
elementary policies of the type1

ẋd = π i(xd ,x, t,ρ i) (1)

where xd is the internal state of the system, t denotes the time, i ∈ {1,2, . . . ,n} is
the index of the motor primitive in a library of movements, and task parameters
ρ i = [θ i,d,g,A, . . .] determine the shape of movement primitive i using θ i ∈ RL,
duration d, goal g and amplitude A, etc, of the motion. The resulting system is
linear in the shape parameters θ i and can therefore be learned efficiently. They are
robust towards perturbations and, as they are time- continuous, they are well- suited
for control.Both primitives in task- spaces as well as in joint- space can be learned.
We have extended Ijspeert et al.’s model [4] so that it may be coupled to additional
external variables included in the state x as discussed in [14]. A key element of the
Ijspeert formulation is that the shape is solely determined by θ i but that it is invariant
under changes of duration, goal or amplitude of the movement. Hence, the resulting
primitives can be reused efficiently by a higher- level supervisory module.

Supervisor. The supervisory level is an increasingly hot topic for research as it
allows the usage of the motor primitive policies π i in a multitude of novel ways.
First, it may reuse a movement primitive with the same shape in various situations
by simply modifying the duration, the goal, the amplitude or other task parameters.

1 Note that Equation (1) is in state- space formulation and, in fact, a second order system.

4 Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer

As we will see in Section 5.1, it is straightforward to learn subgoal functions that set
the task context variables based on the external state. The supervisory level allows
the genereralization of learned movements by creating a mixture of motor primi-
tives, i.e., a new movement policy π results from a convex combination of existing
movements π i. In the same context, we can treat the selection of motor primitives.
Here, the primitive with the maximal weight is activated while in generalization
several primitives using this state-dependent weight. These topics are discussed in
Section 5.2. Other tasks of the supervisor are sequencing motion primitives as well
as blending the transitions between them and the superposition of different move-
ments.

Execution. The execution of a motor primitive π i on compliant robot systems,
which are safe in the interaction with humans, adds another level of complexity.
It requires that we generate motor commands u = h(ẋd ,xd ,x) so that the motor
primitives get executed precisely while not introducing large feedback gains. If ac-
complished using hand-crafted control laws, the quality of the analytical models
is essential and, low gain control can only be achieved with very accurate models.
Hence, in the presence of unmodeled, time-variant nonlinearities resulting from stic-
tion, cable drives, or the hydraulic tubes, it will become essential to learn accurate
models and to adapt them online. We are developing efficient real-time regression
methods for online model learning based on the state-of-the-art in machine learn-
ing, see Section 3.1. If a motor primitive is only acting in a limited subspace, it
can often be better to directly learn a mapping from primitives and states to motor
command. While learning such an operational space control is no longer a standard
regression problem, it can still be solved using a reward-weighted regression when
using insights from mechanics.

Learning is required for acquiring and refining the motor primitives discussed
before. However, it is also needed for adapting the execution to changes in the en-
vironement and to learn the supervisory module, as can be observed in Figure 1.
Learning motor primitives is achieved by adapting the parameters θ i of motor prim-
itive i. The high dimensionality of our domain prohibits the exploration of the com-
plete space of all admissible motor behaviors, rendering the application of many
standard machine learning techniques impossible as these require exhaustive explo-
ration. Instead, we have to rely on a combination of imitation and reinforcement
learning to acquire motor skills where supervised learning is used to obtain the
initialization of the motor skill, while reinforcement learning is used in order to im-
prove it. Therefore, the aquisition of a novel motor task consists out of two phases,
i.e., the `learning robot’ attempts to reproduce the skill acquired through supervised
learning and then improve the skill from experience by trial-and-error through re-
inforcement learning. See Section 4 for more details on this part. When learning to
execute, we are interested in two topics: learning better models of the robots dynam-
ics in order to improve the model-based control laws of the system (as discussed in
Section 3.1), and to directly learn policies that transform task-space motor primi-
tives policies into motor command (see Section 3.2). The supervisory layer poses
a variety of learning problems such learning mappings from states to motor prim-
itive task parameters (see Section 5.1), learning activation functions for selection

Towards Motor Skill Learning for Robotics 5

and generalization of motor primitives (see Section 5.2), sequencing, blending and
superposition of primitives, as well as parsing longer trajectories into motor prim-
itive automata (see [9]) or determining how many movement primitives might be
included in a data set [10].

These components allow us to create a motor skill learning framework in a
bottom-up manner wherein we can understand each component well from an an-
alytical robotics point of view.

3 Learning for Control

Bringing anthropomorphic robots into human daily life requires backdrivable robots
with compliant control in order to ensure safe interactions with human beings. In
contrast, traditional industrial robots employ high control gains which results in
an inherent stiffness and, thus, are ill-suited for this aim. To achieve accurate but
compliant tracking, it is essential to predict the torques required for the current
movement accurately. It is well-known that for sufficiently complex robots (e.g.,
humanoids, service robots), the standard rigid body dynamics (RBD) models no
longer describe the dynamics properly [5], and data-driven approximation methods
become a promising alternative. Using modern machine learning techniques has a
multitude of advantages ranging from higher precision torque prediction to adapta-
tion with online learning if the dynamics are altered.

In this section, we will discuss two learning-to-control problems, i.e., learning
models for control in Section 3.1 and learning operational space control in Section
3.2.

3.1 Learning Models for Control

In theory, learning models of the robot dynamics is a straightforward and well-
defined regression problem, wherein we can observe joint angles q, joint velocities
q̇, joint accelerations q̈ and motor commands u. We intend to infer the unique map-
ping f from state variables x = [q, q̇] and ẋ to motor commands u of which we have
some prior knowledge2

u = M(q)q̈+C(q̇,q)+G(q)+ e(q̈, q̇,q) = f(x, ẋ)

with mass matrix M(q), coriolis and centrifugal forces C(q̇,q), gravity G(q) and
the unmodeled nonlinearities e(q̈, q̇,q).

However, despite being a well-posed problem, and contrary to all progress in ma-
chine learning, online learning of robot dynamics still poses a tremendous technical
challenge for any learning method. It has to deal with an endless stream of high-

2 We can in fact straightforwardly use this knowledge as described in [8].

6 Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer

(a) RBD Model (b) Of�ine Learned Model (c) Online Learned Model

Fig. 2 This figure exhibits the effects of of�ine and online learning in low-gain control. The green
line shows the trajectory of the letter B (previously exhibited by haptic input) as a reference trajec-
tory and the robot is supposed to reproduce this trajectory with reproduction shown as a dashed red
line. In (a), a standard control law using an analytical model provided by the manufacturer Barrett
is shown. In (b), a full GP has been learned of�ine from the letter A and now generalizes to the
letter B with tracking errors where it lacks data. In (c), local GP (LGP) have been learned based
on letter A and improve online while executing letter B. As a result, there is an improved tracking
performance.

dimensional data while learning needs to take place in real-time at sampling rates of
approximately 100Hz. While modern machine learning approaches such as Gaus-
sian process regression (GPR) and support vector regression (SVR), yield signifi-
cantly higher accuracy than traditional RBD models, their computational require-
ments can become prohibitively costly as they grow with number of data points.
Thus, it is infeasible to simply use off-the-shelf regression techniques and the de-
velopment of domain-appropriate versions of these methods is essential in order to
make progress in this direction [7].

One possibility for reducing the computational cost is the partitioning of the data
such that only the regionally interesting data is included in a local regression and,
subsequently, combining these local predictions into a joint prediction. This ap-
proach was inspired by LWPR [2], which employs linear models. Using the more
powerful Gaussian process models, we can achieve a higher prediction accuracy
with less tuning of the algorithm. As a result of the localization and the resulting
smaller local models, we can reach a significantly higher learning and prediction
speed than for standard kernel regression techniques while having a comparable ac-
curacy. While our approach is not as fast as LWPR, it has a significantly improved
prediction accuracy in comparison and requires less manual tuning of the hyperpa-
rameters of the algorithm. The resulting method is called Local GPR or LGP [6] as
it employs Gaussian process regression (GPR) for learning each local model i using

ûi
i = kiT (Ki +s

2
n I)�1Ui = ki T

a i,

where ui
j is the torque for joint j predicted by model i, Ki is the kernel matrix with

Ki
ml = k(xi

m,xi
l), the kernel vector ki with ki

m = k(x,xi
l) between the new input x

and the stored data points xl , as kernel k a Gaussian kernel is employed (however,
Matern kernels and rigid-body kernels have been used successfully in this context),

Towards Motor Skill Learning for Robotics 7

past actions Ui and the so-called prediction vector ai. This prediction vector can
be updated incrementally which is computationally feasible as we only have small
local models. A weighted average allows the combination of the local models

û = ∑
n
i=1 wiûi

∑
n
i=1 wi

,

where the weights wi = exp(�0.5s
�2
i kx� cik2) are used to re-weight the model i

in accordance to the proximity of the input x to the centers of the model ci.
Due to the reduced computational cost, this approach was successfully imple-

mented on a real Barrett WAM arm where it was able to improve the tracking
performance while learning online. When using the learned model in a computed
torque setup where the learned model is employed to predict the required torque
while stabilized by a linear low-gain control law. It can be shown that the learned
model outperforms RBD models and, due to the online improvement, also most
global regression techniques. Figure 2 exhibits the difference between these meth-
ods. In Figure 2(a), the performance of a low-gain feedback control law with a RBD
model is shown for tracking the letter B, Figure 2(b) shows an of�ine-learned model
trained with the letter A tracking letter B and 2(c) shows the improvements due to
online-learning. For details on the approach please refer to [6]. Future work will
include improvements on the current method, the inclusion of a priori knowledge
about the rigid body dynamics into the regression (see [8]) and applications to op-
erational space control, see Section 3.2.

3.2 Learning Operational Space Control

Operational space control (OSC) is one of the most elegant approaches to task con-
trol for complex, redundant robots. Its potential for dynamically consistent control,
compliant control, force control, and hierarchical control has not been exhausted
to date. Applications of OSC range from basic end-effector control of manipula-
tors [18] to balancing and gait execution for humanoid robots [23]. If the robot
model is accurately known, operational space control is well-understood and a va-
riety of different solution alternatives are available. However, as many new robotic
systems are supposed to operate safely in human environments, compliant, low-gain
operational-space control is desired. As a result, the practical use of operational
space control becomes increasingly difficult in the presence of unmodeled nonlin-
earities, leading to reduced accuracy or even unpredictable and unstable null-space
behavior in the robot system.

Learning control methods are a promising potential solution to this problem.
However, learning methods do not easily provide the highly structured knowledge
required in traditional operational space control laws, e.g., Jacobians, inertia ma-
trices, and Coriolis/centripetal and gravity forces, since all these terms are not al-
ways instantly observable. They are therefore not suitable for formulating super-
vised learning as traditionally used in learning control approaches.

8 Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer

We have designed novel approaches to learning operational space control that
avoid extracting such structured knowledge as much as ill-posed problems and
rather aim at learning the operational space control law directly, i.e., we pose OSC
as a direct inverse model learning problem where we acquire an execution policy of
the type u = h(ẋd ,xd ,x,u0) in which xd = [ṗd ,pd] and ẋd denote the desired behav-
ior prescribed by the motor primitives in task space while the state x = [ṗ,p, q̇,q] of
the robot is still described by both state-space and task-space components as well
as a null-space behavior u0. Similarly, if we wanted to directly learn the operational
space control law as done for model learning in Section 3.1, we would have an ill-
posed regression problem as averaging over a non-convex data set is not directly
possible. However, the first important insight for this paper is that a physically cor-
rect solution to the inverse problem with redundant degrees-of-freedom does exist
when learning of the inverse map is performed in a suitable piecewise linear way
[19, 20]. The second crucial component for our work is based on the insight that
many operational space controllers can be understood in terms of a constrained op-
timal control problem [18]. The cost function associated with this optimal control
problem allows us to formulate a learning algorithm that automatically synthesizes a
globally consistent desired resolution of redundancy while learning the operational
space controller. From the machine learning point of view, this learning problem
corresponds to a reinforcement learning problem that maximizes an immediate re-
ward. We employ an expectation-maximization policy search algorithm in order to
solve this problem. Evaluations on a simulated three degrees of freedom robot arm
show that the approach always converges to the globally optimal solution if provided
with sufficient data [20].

The application to a physically realistic simulator of the anthropomorphic SAR-
COS Master arm demonstrates feasibility for complex high degree-of-freedom
robots. We also show that the proposed method works in the setting of learning
resolved motion rate control on a Mitsubishi PA-10 medical robotics arm [22] and
a high-speed Barrett WAM robot arm.

The presented approach also allows us to learn hierachies of operational space
controllers where a higher level operational space control law i given by ui =
h(ẋd

i ,xd
i ,x,ui�1) is simply fed the output of the next lower-level operational space

control law ui�1 as input. This kind of daisy-chaining of learned control laws may in
the future allow us to properly solve the problem of superimposing motor primitives.

4 Imitation & Reinforcement Learning with Motor Primitives

Humans and many mammals appear to rely on motor primitives [3] in order to
generate their highly agile movements. In many cases, e.g., when learning to play
tennis, humans acquire elementary actions from a teacher. This instructor takes the
student by the hand and shows him how to perform forehand and backhand swings.

Towards Motor Skill Learning for Robotics 9

Fig. 3 This figure shows how a ball-on-a-string task can be learned by imitation. The human
demonstration presents a rhythmic movement with an initial discrete transient where the generic
movement is represented by a rhythmic motor primitive modulated by a discrete motor primitive
handling the start-up phase.

Subsequently, the student tries to play by himself and improves as he observes the
results of his own successes and failures.

4.1 Imitation with Motor Primitives

When viewed from a probabilistic perspective, imitation learning can be seen as a
relatively straightforward problem. When we have observed trajectories τ = [ẋ,x]
as well as their distribution p(τ), we will try to reproduce these movements by
matching this distribution with a distribution pθ (τ) that is determined by the policy
parameters θ . While such a policy can be either deterministic or stochastic, it is
often easier to model it as a stochastic policy to take the variation in the data into
account.

This policy is represented by a motor primitive modeled by a dynamical system
as described by Equation (1). Here, imitation learning reduces to inferring the set of
parameters so that the distance D(p(τ)||pθ (τ)) between the observed distribution
p(τ) and the reproduced behavior distribution pθ (τ) is minimized. The Kullback-
Leibler divergence is known to be the natural distance measure between probability
distributions and is hence employed here.

From this point of view, one can straightforwardly derive regression algorithms
such as the ones in [4, 14] to imitate using both the standard formulation of motor
primitives [4] as well as the perceptually coupled formulation [14]. As a result, we
can learn complicated tasks such as paddling a ball [15] simply by imitation, see
Figure 3. This formulation can be made to work both with imitations captured using
a VICON setup, see [14], as well as for kinethetic teach-in as in [15].

However, in most real life situations, imitation learning does not suffice and self-
improvement is required. E.g., for the Ball-in-a-cup shown in Figure 4, an imitation
only suffices for bringing the ball somewhere in the proximity of the cup.

10 Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer

4.2 Self-Improvement by Reinforcement Learning

Reinforcememt learning is in general a much harder problem. Unlike in imitation
learning, its focus no longer lies on simply reproducing a presented behavior, but
rather on improving a behavior with respect to rewards r. Hence, the system has
to try out new actions and, from these actions, infer the policy parameters θ � that
maximizes the expected return

J(θ) = E
{

1
T

R1:T

}
= E

{
d t
d ∑

d=d t
i=1 rt

}
,

where 1=d t is the sampling rate of the system, d the duration, T = d=d t the number
of steps and R1:d=d t is the return of an episode. In the general setting, reinforcement
learning might be an unsolvable problem. Finding a generically optimal policy re-
quires exhaustive try-outs of possible state-action pairs, wherein the number of pos-
sibilities grows exponentially with the number of degrees of freedom involved in the
task. As anthropomorphic robot exhibit a high dimensionality, they remain beyond
the reach of generic reinforcement learning methods.

However, the full reinforcement learning problem appears to be solved rarely in
human motor control. For example, olympic high jumper used to refine a variety
of different techniques (e.g., straddles, scissor jumps and eastern cut-offs) that all
involved running towards the bar and jumping forward. It took until 1968 when
the athlete Dick Fosbury accidentally found out that approaching the bar from the
side and jumping backwards might be a significantly superior policy. While no re-
inforcement learning method is in sight that will provide us automatically with such
insights, we can design local reinforcement methods that allow us to improve ex-
isting policies incrementally. To do so, we rely on obtaining initial parameters θ 0
from an imitation and, subsequently, optimize this policy by self-improvement with
respect to the expected return.

Pursuing this type of approach for several years, we have been developing a se-
ries of different methods. We originally started out by following the policy gradient
approach [12] where the policy improvement is achieved by following the gradient
of expected return with respect to its parameters. The resulting update rule can be
denoted by

θ k = θ k�1 +ak ∇θ J(θ)|
θ=θ k

,

where ak denotes a learning rate at update k and ∇θ J(θ) is a policy gradient. How-
ever, the standard or `vanilla’ policy gradient proved to be suprisingly slow and,
thus, not applicable on real robots. It turned out that a covariant or `natural’ policy
gradient was able to provide us with the learning speed required for basic motor
primitive learning in robotics and we were able to optimize basic movements as
well as a T-Ball swing [12]. Nevertheless, the resulting algorithms had open pa-
rameter such as the learning rate and the learning process would be too slow for
some tasks. As a result, we studied the similarity between expectation-maximization
(EM) algorithms and policy gradients. It turned out [11, 19, 20, 13] that as a new
cost function we can maximize the distance D(R(τ)p(τ)||pθ (τ)) between return- or

Towards Motor Skill Learning for Robotics 11

Fig. 4 This figure exhibits the general approach, first, a robot is taught the basic movement which
is turned into a motor primitive using imitation learning. Subsequently, reinforcement learning is
applied to the problem until the robot obtains a motor primitive policy where it slings the ball
perfectly into the cup every single time. The imitation is shown in the upper time series while the
optimal learned policy is shown in the lower row.

reward- weighted observed path distribution R(τ)p(τ) and the new path distribution
pθ (τ). This cost function can become part of a lower bound on the expected return
J(θ) and, hence, maximizing it iteratively as in

θ k = argmaxθ D(R(τ)pθ k(τ)||pθ (τ))

will at least converge to a locally optimal policy. Such algorithms allow us to show
that the problem of policy search can been framed in the parameter estimation set-
ting and, as the similarity to the equations in Section 4.1 makes clear, we have
obtained a reward- weighed imitation. At this point, one needs to think about explo-
ration and the type of exploration determines the type of parameter estimation that
can be used. For instance, Gaussian exploration with constant variance will result
in the reward- weighted regression algorithm [19, 20] and heteroscedastic Gaussian
exploration will result in the PoWER algorithm [13].

The PoWER algorithm has been used successfully in a variety of settings, most
prominently, it has been able to learn ball- in- a- cup. Here, it started to learn with a
policy obtained by imitation that could barely bring the ball into the proximity of
the cup. Subsequently, it has learned how to catch the ball in the cup and after less
than a hundred trials, it manages to succeed at every trial.

5 Towards Learning the Supervisor

In order to get a step closer to creating complex tasks that require a supervisor,
various other topics need to be addressed as already outline in Section 2. We will
first discuss two topics where we have made recent progress, i.e., goal learning
in Section 5.1, and the mixture of motor primitives in Section 5.2. Further topics
for learning the supervisory layer are sequencing, blending and superposition of

12 Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer

Fig. 5 This figure shows a dart thrown in a physically realistic simulation. Here, the robot is told
that the dart should hit a specific target square on the disk and learns to modulate the goal in order
to adapt a single motor primitive to many different situations.

primitives as well as the parsing of longer trajectories into motor primitive automata
(see [9]) or determining how many distinct movement primitives are included in a
data set ([10]).

5.1 Goal Learning

Previous work in learning for motor primitives has largely focussed on learning the
shape parameters θ i (see Section 4) while duration d, goal g, amplitude A, etc.,
were simply considered constant parameters optimized along with the shape [12] or
set based on an external stimuli [21]. Here, we attempt to learn mappings from the
state to these parameters which allow us to take movements of the same shape and
use them for various different contexts. Nevertheless, in goal learning, we assume
that we have to respond to constantly changing external stimuli, and always adapt
the external parameters appropriately. For example, assume that you are playing
a dart game where you are told to hit predetermined fields on the dart board in a
certain sequence (as in Figure 5). In this case, all movements will simply be slight
variations of that same throwing movement and can be represented by the same
movement primitive. Hence, the proper way to adapt motor primitive to the square
that you intend to hit is by altering its duration d and goal g.

However, in order to learn this dart game faster than can be achieved using the
shape parameters, we also need another method. We discovered that this can be
achieved using a cost regularized Gaussian process regression.

5.2 Mixture of Motor Primitives

Selection of motor primitives as well as generalization between motor primitives
can be achieved using a mixture of motor primitives approach. In such an approach,
we have a gating or localization network l , similar to that in a mixture of experts
[16] as part of the supervisor system and activates the right motor primitives. As a
result, we obtain a task policy u = π(x, t) that is composed of the n primitives such
that

u = π(x, t) = ∑
n
i=1 li(x0)πi(x, t)

∑
n
j=1 l j(x0)

, (2)

Towards Motor Skill Learning for Robotics 13

where li(x0) denotes the activation of the motor primitive i represented by πi and x0
denotes the initial state based upon which of the primitives are activated. A project
currently in progress is the learning of table tennis [17] using a mixture of motor
primitives (see Figure 6). Here, we currently have achieved already a success rate of
52% of the learned table tennis control law in a ball gun setup and we hope to have
a significantly improved setup in the near future.

Fig. 6 The mixture of motor primitives is used for the
selction and generalization of motor primitives in a table
tennis setup.

Using the example of table
tennis, we can straightforwardly
explain how the mixture of mo-
tor primitives is able to gener-
alize between motor primitives.
Assume that the system has suc-
cessfully learned n primitives by
imitation observed with different
external states xi

0 (such as a ball
position and velocity) and a gat-
ing network l has been obtained.
In this case, if a ball is observed
at a new initial state x0, the mo-
tor primitives, that resulted in a
successful responses to the most
similar input, will also be acti-
vated and the resulting movement will be a convex combination of the previously
successful ones. Selection can be understood in a similar fashion, i.e., if there are
both forehands and backhands in the data set, these will be responses to drastically
different ball trajectories if viewed in the robot coordinates. Hence, the gating net-
work will discriminate between both types of motor primitives.

6 Conclusion

In this paper, we have presented both past and current progress towards a complete
framework for motor skill learning. While an overview paper in its nature, we have
given a detailed outline of a general framework for motor skill the ingredients of
which we have been investigating. We have presented selected topics in several im-
portant areas. In learning to control, we have reviewed our work on learning models
using local GPs and on learning operational space control. When learning motor
primitives, we have discussed both imitation learning approaches as well as our
progress in reinforcement learning for robotics starting from policy gradients and
moving towards reward-weighted self-imitation. Current work towards learning the
supervisory layer for complex tasks is brie�y discussed with a more in-depth focus
on learning goal function as well as generalizing and selecting movement primi-
tives. Successful implementations on real robots as well as in simulation underline
the applicability of the presented approaches.

14 Jan Peters, Katharina Mülling, Jens Kober, Duy Nguyen-Tuong, Oliver Krömer

References

1. Sciavicco, L. and B. Siciliano. Modeling and control of robot manipulators. MacGraw-Hill,
Heidelberg, Germany, 2007.

2. S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques from nonparameteric
statistics for real-time robot learning,” Applied Intelligence, pp. 49–60, 2002.

3. Schaal, S., A. J. Ijspeert, and A.Billard. Computational approaches to motor learning by
imitation. In The Neuroscience of Social Interaction, C. D. Frith and D. Wolpert, Eds., Oxford,
UK: Oxford University Press, 2004, pp. 199–218.

4. Ijspeert, A. J., J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor
primitives. In Advances in Neural Information Processing Systems, volume 15, pages 1547–
1554, Cambridge, MA, 2003. MIT Press.

5. Nakanishi, J., J.A. Farrell, and S. Schaal. Composite adaptive control with locally weighted
statistical learning. Neural Networks, 18(1), 71-90, 2005.

6. Nguyen-Tuong, D., M. Seeger and J. Peters. Local Gaussian Process Regression for Real Time
Online Model Learning and Control. Advances in Neural Information Processing Systems 21
(NIPS'08), Cambridge, MA: MIT Press, 2009.

7. Nguyen-Tuong, D., M. Seeger and J. Peters. Computed torque control with nonparametric
regression models. Proceedings of the 2008 American Control Conference (ACC'08), 2008.

8. Nguyen-Tuong, D. and J. Peters. Semi-parametric regression in learning inverse dynamics.
Submitted to International Conference on Robotics & Automation (ICRA), 2010.

9. Chiappa, S and J. Peters. Motion segmentation by detecting in continuous time-series. Sub-
mitted to Advances in Neural Information Processing Systems 22 (NIPS'09), Cambridge, MA:
MIT Press, 2010

10. Chiappa, S., J. Kober and J. Peters. Using Bayesian Dynamical Systems for Motion Template
Libraries Advances in Neural Information Processing Systems 21 (NIPS'08), Cambridge, MA:
MIT Press, 2009.

11. Dayan, P. and G. E. Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9(2):271–278, 1997.

12. Peters, J. and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4), pages 682-697 (2008) .

13. Kober, J. and J. Peters. Policy Search for Motor Primitives in Robotics. Advances in Neural
Information Processing Systems 21 (NIPS'08), Cambridge, MA: MIT Press, 2009.

14. Kober, J., B. Mohler, and J. Peters. Learning Perceptual Coupling for Motor Primitives. In
Proceedings of the IEEE International Conference on Intelligent RObots and Systems (IROS),
2008.

15. Kober, J. and J. Peters. Learning Motor Primitives for Robotics. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2009.

16. Jordan, M. and R. Jacobs Hierarchical mixture of experts and the EM algorithm. Neural
Computation, 6: 181–214, 1994.

17. Muelling, K. (2009). Learning
18. Peters, J., M.Mistry, F.E.Udwadia, J.Nakanishi and S.Schaal A unifying methodology for

robot control with redundant DOFs. Autonomous Robots, 24(1), 1-12, 2008.
19. Peters, J. and S.Schaal Reinforcement learning by reward-weighted regression for operational

space control. Proceedings of the International Conference on Machine Learning (ICML'07),
Oregon, USA, 745-750, 2007.

20. Peters, J. and S.Schaal Learning to Control in Operational Space. The International Journal
of Robotics Research, 27(2), 197-212, 2008.

21. Pastor, P., H.Hoffmann, T., Asfour and S., Schaal. Learning and generalization of motor skills
by learning from demonstration, In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2009.

22. Peters, J. and D. Nguyen Real-Time Learning of Resolved Velocity Control on a Mitsubishi
PA-10. International Conference on Robotics and Automation (ICRA), 2008.

23. Sentis, L. and O. Khatib Synthesis of whole-body behaviors through hierarchical control of
behavioral primitives. International Journal of Humanoid Robotics, 2(4):505-518, 2005

