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Abstract— This paper presents a method to incorporate
ergonomics into the optimization of action sequences for bi-
manual human-robot cooperation tasks with continuous physi-
cal interaction. Our first contribution is a novel computational
model of the human that allows prediction of an ergonomics
assessment corresponding to each step in a task. The model is
learned from human motion capture data in order to predict the
human pose as realistically as possible. The second contribution
is a combination of this prediction model with an informed
graph search algorithm, which allows computation of human-
robot cooperative plans with improved ergonomics according
to the incorporated method for ergonomic assessment. The
concepts have been evaluated in simulation and in a small user
study in which the subjects manipulate a large object with a
32 DoF bimanual mobile robot as partner. For all subjects, the
ergonomic-enhanced planner shows their reduced ergonomic
cost compared to a baseline planner.

I. INTRODUCTION

Industrial robots have begun to leave their cages, but are
not yet anywhere near the point where they can cooperate
with humans at an equal level. Through physical assistance
and cooperation, robots have a large potential to make human
lives easier and prevent muskuloskeletal disorders (MSDs).
However, physical Human-Robot Interaction (pHRI) is still
largely restricted to handling, lifting, and positioning scenar-
ios in which robots do not have the autonomy to plan their
provided assistance themselves [1].

For example, consider the case of moving a large object
that is too heavy or bulky to be safely and comfortably
manipulated by one person. In such cases a cooperative
robot providing physical assistance could take most of the
weight, or at least support the object in a way that allows
the human to remain in a comfortable, ergonomic posture.
Non-ergonomic poses are very high on the list of causes of
work-related MSDs [2], closely followed by heavy physical
work and lifting. Product lifecycle management software,
like Siemens Jack [3], is used in industry to optimize the
ergonomics of products or processes, including collaborative
robot arms [4], in the design phase. However, such tools are
typically useful for static environments or processes which
do not involve any on-the-fly customization or adaptation
to specific users. Incorporating human ergonomics measure-
ments in the decision-making process of cooperative robots
at run-time has the potential to improve the long-term impact

1Delft University of Technology, Mekelweg 2, 2628CD The
Netherlands {l.f.vanderspaa, j.kober}@tudelft.nl,
tamas.bates@tum.de

2Honda Research Institute Europe, Offenbach, Germany
michael.gienger@honda-ri.de

BB

AA

Fig. 1. Robot test setup of the human-robot cooperative planner. A: The
human partner wears a full-body motion capture suit (for validation). B:
The screen displays the cooperative plan for both partners.

on workers even when the task and physical environment
may be highly dynamic or unknown in advance.

In this paper, ergonomic optimization is applied to the task
of manipulating a large object, which requires continuous
interaction between the robot and the human partner. The
presented ergonomic planner extends the sequential planner
of [5] to select a sequence of states which is ergonomically
optimal for the human partner. The new planner is applied
to the task of rotating large objects (Fig. 1).

The contribution of this paper is twofold: 1) We de-
velop a model that predicts the ergonomics of a human
within a human-robot collaborative task (Sec. IV). 2) This
ergonomics predictor is integrated in sequential task planning
(Sec. V), resulting in a joint plan for the human and robot
movements optimized for human ergonomics. Subsequently,
Sec. VI explains how this method is applied to our test
case. The presented ergonomic planner is compared to a
baseline planner which optimizes solely for a minimum
time solution, without additionally optimizing for the partner
ergonomics. The simulation results and user study evaluation
are presented in Sec. VII. Our findings are concluded and
discussed in Sec. VIII. But first, related work is discussed in
Sec. II and a system overview given in Sec. III.

II. RELATED WORK

Literature shows various research on physical human-
robot cooperation (pHRC), improving ergonomic working
conditions, and some steps towards integrating the two.

A. Physical Human-Robot Cooperation

An important area of pHRC research focuses on a human
and robot jointly manipulating a single tool [6]–[8]. These
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problems require a form of impedance control, which al-
lows stiffnesses to be varied to achieve improved trajectory
tracking while decreasing the human task effort. This form
of co-manipulation has been extended to cooperative car-
rying of objects, still using impedance control to manage
the interaction forces between the robot and human [9],
[10]. Instead of using the position of the manipulator or
manipulated object for impedance control, EMG signals have
been successfully used as an input “intention estimate” for
controlling cooperative object manipulation [11], [12].

A different form of cooperative physical interaction is
observed in object hand overs. Much research in this area has
focused on predicting where the human will move his/her
hand [13] or, incorporating knowledge of a task model,
classifying the intended (next) action [14], [15].

More complex, sequential, tasks that require regrasping
during co-manipulation of objects have been addressed in
[16], in which a planner was developed for dyadic collabo-
rative manipulation, which includes a model of the human
as an active agent who shares the task objective.

B. Optimizing Ergonomics in pHRC
Ergonomic optimization has made a recent appearance in

the field of pHRC. So far two trends have been observed.
The first trend is the task of holding a workpiece in the

optimal position in space while a human works on it. For
example, in tasks like drilling in which a human applies a
tool to an object, the position of the object held by a robot
has been ergonomically optimized to minimize joint torques
[17], [18], muscular effort [19] or the RULA score [20], [21].

The second trend, in the domain of sequential tasks, is in
optimizing the ergonomics for short moments of interaction
during the handover of objects [22]. In these cases the human
pose only depends on the robot in the brief instants of the
handover, and each handover pose is independent of the
previous ones.

C. Ergonomic Measures
Extensive bio-mechanical models exist (e.g. [23]) which

can be used to simulate human bodies to extract information
that cannot be directly obtained from sensors. However, the
complexity of full muskuloskeletal models makes them com-
putationally expensive to use. In [19] a full muskuloskeletal
model is used to train a low dimensional latent variable
model, which is then used for minimizing muscle activation
in a bimanual drilling task. In [17], [18], a weighted sum
of joint torques has been used as an ergonomic measure, in
which the joint torques were obtained from the full-body
pose combined with the estimated respectively measured
center of pressure.

Many methods in practical use are based on tables and
checklists [24] designed for manual evaluation of tasks by an
ergonomics expert. A generally accepted and popular method
for full-body evaluation, verified by ergonomic experts and
easy to automate, is the Rapid Entire Body Assessment
(REBA) [25] (which is the full-body extension of RULA
[21]). REBA requires measurement of the full-body pose and
estimation of the external forces acting on the body.

Fig. 2. System overview: The task model provides a goal. In order to reach
this goal, the planner proposes sequences of hand poses. An ergonomics
estimator is developed to evaluate the ergonomic cost of these hand poses,
such that minimizing this cost results in an ergonomic task solution.
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Fig. 3. Predicting the ergonomic cost from hand poses.

III. SYSTEM OVERVIEW

The focus of this paper is the design of a method for
ergonomic planning of tasks in which both human and robot
need to coordinate their movements to satisfy the constraints
of the task (e.g. do not drop the object). To this end, we
developed a method to estimate the ergonomic cost based on
a prediction model of the human’s pose and loads (Sec. IV).
This predicted ergonomic cost is then incorporated in a
sequential planner (Sec. V). A schematic overview of the
two components and their interaction is given in Fig. 2.

IV. ERGONOMICS PREDICTOR

In order to estimate the ergonomics (Sec. IV-A) of the
hand poses, we need to predict the postures the human will
use to obtain these hand poses, as well as the load that will
act on the human in these postures (Fig. 3). For predicting the
posture, we employ a learned pose predictor combined with
an inverse kinematics correction to estimate the full-body
pose of the human based on his/her hand poses (Sec. IV-B).
The load is estimated based on the hand poses of the human
and the robot, combined with the physical properties of the
manipulated object (Sec. IV-C).

A. Ergonomic Assessment

In this paper, we chose REBA [25] as the ergonomics
assessment method. By using a standardized ergonomics
metric, we expect that our results will be compatible with
existing ergonomics practices. Even so, the metric is easily
replaceable by any other measure derivable from pose and
load information.

REBA applies a set of tables to evaluate the human
posture from joint angles augmented with some additional



Fig. 4. An object supported at four points, by: c1: robot right, c2: robot left,
c3: human right, and c4: human left hand. At each contact point, the total
force F is the vector sum of the normal force FN , acting in direction θ, and
a tangential force FT , which can be decomposed into vectors pointing in
y and z direction. The x direction is defined from the human to the robot.

information, e.g., external loads (Sec. IV-C) or whether the
human is standing on one leg. The resulting score ranges
from 1 (negligible risk) to a maximum of 12 (high risk: 8-
10, very high risk: 11+).

The original REBA assessment considers only one active
arm. For the bimanual tasks we are considering, we evaluate
the arm that is the least ergonomic in order to compute
the worst-case REBA score. The full-body pose score is
integrated over time to evaluate and compare plans.

B. Full-Body Pose Estimator

For the ergonomic assessment, we need to infer a full-
body pose given the hand poses. Mapping hand poses to a
full-body pose is a redundant problem, which we chose to
solve in the following two steps:

1) Learned Pose Predictor From Data: maps the two
human hand poses to the human’s full-body pose by means
of supervised learning. Given that the training data does not
always cover the whole input space, there might be small
errors in these predictions.

Since the mapping from hand poses to full-body poses is
not unique, we record humans to get full-body poses that
are typically employed. The datasets contain full-body joint
angles (59 degrees of freedom) and a corresponding forward
kinematic model. We learn a nearest neighbor (NN) map and
an LWPR model [26]. The models are trained on the hand
poses obtained by the forward kinematics model from the
recorded poses. Evaluation and selection of the models is
discussed in Sec. VI.

In any case, the hand positions and orientations of the
estimated full-body pose will not exactly match the target.
This is corrected in the next step:

2) Inverse Kinematic (IK) Pose Correction: makes the
hands of the full-body pose match the hand poses.

The IK pose correction step will correct the pose to
comply with the human hand poses. Additional constraints
are applied to align the feet with the ground plane, and to
keep the overall center of mass balanced. See [27] for details.

C. Hand Load Estimator

The load on each human hand is estimated based on the
hand poses of the human and robot as well as physical prop-
erties (such as the mass, geometry, and friction parameters)
of the manipulated object. To do so, we solve the following
optimization problem: each of the hands is allowed to exert
a normal force FN and a tangential force FT (as depicted in
Fig 4). Static balance is assumed at all times. Two reasons
support this assumption: all (allowed robot) motions are slow,
and the planner only considers configurations in which it
should be possible to halt the plan, for example, to wait for
a confirmation to continue.

The optimization criterion is the square of the resultant
forces summed over all hands in contact, which expresses
the desire to hold the object as lightly as possible. Given
which hands are in contact with the object, Eq. (1) describes
the optimization problem:

min
∑

i=hands in contact

(
F 2
N,i + F 2

T,i

)
(1)

subject to the following bounds for each of the hands:

−
√
F 2

maxPull,i − F 2
maxT,i ≤ FN,i ≤

√
F 2

maxPush,i − F 2
maxT,i

(1a)
−FmaxT,i ≤ FT,i ≤ FmaxT,i (1b)

and the static balance constraints,∑
iFx,i = 0,

∑
iFy,i = 0,

∑
iFz,i = mg, (1c)∑

iMx,i = 0,
∑

iMy,i = 0,
∑

iMz,i = 0, (1d)

where FmaxPull,i, FmaxPush,i, and FmaxT,i are the maximum
pulling, pushing, and tangential forces for each of the (robot
and human) hands in contact. Gravity g is acting on the
object’s mass m in the negative z-direction (Fig. 4). The
solution of this optimization problem is the set of minimum
hand forces required to hold the object in static balance.

V. ERGONOMIC PLANNER

For planning, the general planning architecture of [5] has
been extended to include the ergonomic cost of the human
partner. Given some goal state provided by the task model
(Fig. 2), the state space is searched for a sequence of states
to reach the goal with minimum cost. This plan can be
converted to smooth motion trajectories for the robot’s hands,
and through full-body IK, motor commands for the robot
hardware can be computed. For further details, the reader is
referred to [5].

Given an object of known size and weight, the tasks we
consider are formulated in terms of the desired position and
orientation (pose) of the object. In order to plan how best
to cooperatively manipulate the object to achieve this goal,
the underlying state description comprises the object pose
as well as the contact locations for robot and human hands.
Fig. 5 depicts the discrete state description for the box object
used in our study. However, the face of the object can have an
arbitrary shape. Possible contact locations are defined evenly
distributed around the graspable surface of the object, with



Fig. 5. State description. The numbers in the circles enumerate the contact
locations on one side of the object. Discretized height h (from ground) and
angle Φobject define the position and orientation of the object.

the hand normal vector always perpendicular to the object
surface. In this way, the index of the contact location suffices
to describe the position and orientation of each hand.

An A∗ graph search is applied to find a state sequence
which is optimal with respect to some cost criterion. Costs
accumulate as the planner explores possible next states in the
sequence and each transition from one state to the next has an
associated cost. In [5], this transition cost was proportional
to the time the robot needed for the transition.

In the ergonomic planner, the transition cost is extended
by the predicted ergonomic cost of the human partner. With
the method presented in Sec. IV, the REBA score can be
computed for each of the states proposed by the planner. It
is assumed that subsequent states are close enough, and the
change between them slow enough, that the properties (such
as pose and load) during the transition between the states can
be estimated sufficiently by linear interpolation between the
enclosing states. Currently, we assume each state transition to
have a fixed duration. Therefore, we assume the ergonomics
of the transitions can be compared by taking the average
REBA score of the enclosing states.

The human ergonomic cost term is scaled to dominate the
previously described robot cost by one order of magnitude.
When different possible successor states have the same cost,
the planner is biased towards selecting the next state which
requires the least movement. While not exploited in the
experiments, it should be stated that our planning architecture
allows for specifying an upper bound on the permissible
ergonomic cost. This can easily be incorporated into the
employed planner by rejecting states with an ergonomic cost
larger than a given limit.

VI. EVALUATION SCENARIO

In this paper, the method is applied to a cooperative object
rotation task in which the object is held on one side by
the robot and on the other side by a human. A proof-of-
concept user study with four subjects was conducted with a
rectangular box of dimensions 0.63×0.36×1.0 m, weighing
10 kg (Fig. 1). The box is rotated in the 2D plane around
the axis pointing from the human to the robot. Translation
is only allowed in the vertical direction, as specified by
h. The state space is defined as in Fig. 5, with angles

TABLE I
MODEL ESTIMATION ERRORS, MEAN±STD, FOR THE NN AND LWPR

PREDICTORS WITH DIFFERENT ANGLE WEIGHT FACTORS.

Angle weight factor 0.0 0.1 0.2 0.3 0.4 0.5

NN |~x| in cm 13±8.2 13±8.2 13±7.5 14±7.6 15±8.3 15±8.7
6 in deg 30±34 21±18 17±10 15±9.6 14±8.9 14±8.5

LWPR |~x| in cm 15±10 14±9.1 16±10 15±9.3 17±8.7 14±8.3
6 in deg 39±35 36±31 30±37 22±26 26±34 16±22

Φobject ∈ {0◦,∆Φ, . . . , 360◦ −∆Φ} ,∆Φ = 30◦ and heights
h ∈ {0.5, 0.5 + ∆h, . . . , 2.0} ,∆h = 0.1 in meters. This
section presents the relevant implementation details to the
simulation tests and user study discussed in Sec. VII.

A. Pose Estimation

Each participant was equipped with a motion capture
suit for data collection, and was asked to move and rotate
the box with a human partner. A corresponding dataset of
about 1.5 min with a sampling time of 4 ms was recorded.
Participants were guided to move the box through a large
range of positions in the overall task space. The obtained
dataset was used to train a subject-specific pose predictor
which, after IK correction, provides a pose estimate that
reflects the respective participant’s personal pose behavior.
The smaller the IK correction can be kept, the more human-
like the predicted poses will be, and the more personal
behavior is captured.

The pose predictor is trained to estimate the full-body
pose from hand positions and orientations. A weight factor
scales the importance of the orientations with respect to the
positions. One set of training data (18k samples) was used
to train the NN and LWPR predictors with different angle
weight factors. The models were evaluated with a different
dataset (25k samples) containing similar poses of the same
person. The results are shown in Table I.

In general, the NN prediction results in a lower mean error
and smaller standard deviation compared to the LWPR. The
differences are small for the position precision, but the NN
predictor performs much better when it comes to predicting
the correct angles of the hands. An angle weight factor of
0.3 was chosen for the subsequent experiments, trading off
position and orientation.

The body pose estimation, especially the IK correction
step, is too computationally expensive for the planner to run
on every state evaluation. As the set of states considered
during planning is discrete and finite, we generate a table
which contains the full-body pose stored for every set of
unique human hand states and object heights. Then, during
search, only this table needs to be evaluated in order to obtain
the pose for ergonomic evaluation.

B. Load Estimation

Currently, we disallow grasping (and hence pulling). For
the robot this will always be the case, as it is not able to grasp
the objects. The people in the study were instructed not to
grasp, only support, the object. Thus, all forces in x direction,



TABLE II
PARAMETERS AND CONSTRAINT VALUES FOR THE LOAD ESTIMATION

maximum human pulling force Fh,maxPull 0.0 N
maximum robot pulling force Fr,maxPull 0.0 N
maximum human pushing force Fh,maxPush 98.1 N
maximum robot pushing force Fr,maxPush 137.3 N
friction coefficient human µh 1.1
friction coefficient robot µr 1.1
object (box) mass m 10.0 kg

perpendicular to the object face (Fig. 4), are assumed to
be zero. Therefore, the maximum allowed tangential forces
depend on the normal forces and the friction coefficients,
i.e., FmaxT,i = µi|FN,i|, with the friction coefficients µi.

The parameter values used in the presented cases are listed
in Table II. Since REBA considers a maximum load of
10 kg, this was set as the maximum allowed human pushing
load. The robot arms have a maximum load specification of
14 kg. The friction coefficients are an estimate based on the
friction coefficients of combinations of materials the human
and robot hands and the box are made of.

As for the full-body poses, the loads are precomputed and
stored in a table for fast retrieval during planning.

VII. EXPERIMENTAL RESULTS

The ergonomic planner is tested in a small user study of
four people (1 female, 3 male), ranging in height between
1.70 and 1.95 m, on the task of collaboratively rotating the
box 180◦, clockwise and counterclockwise. The subjects
were specifically chosen for their differences in size and
build in order to prove the concept. The ergonomic perfor-
mance of the planner is compared to that of the planner
without the ergonomic cost term. In order to evaluate the
quality of the ergonomic planner, the participants need to
follow the robot’s collaborative plan for them. The plan is
displayed on a large screen next to the robot.

The planner is evaluated in simulation and in an experi-
mental setup with the robot depicted in Fig. 1. During the
experiments, the participants wear an Xsens motion capture
suit [28] to measure their poses. The REBA scores are
computed from the predicted, respectively measured, poses
combined with the estimated loads. Measurements of the
robot hand forces show an average force estimation error
of 0.4 N, with a standard deviation of 9.8 N. Compared the
average predicted force of 25.9 N, this is accurate enough
for our purposes.

Fig. 6 shows seven states out of a sequence proposed by
the ergonomic (top row) and baseline (bottom row) planners
for the goal of rotating the box 180◦. The original planner
just tries to minimize the time to task completion. As a result,
the height of the object is held constant and, by default, the
robot always regrasps first. For a fair comparison between the
two planners, the height of the object in the initial state is the
ergonomically optimal height of the starting pose according
to the human pose model.

The ergonomic planner adjusts the height to optimize
ergonomics. Who regrasps first also depends on what is most

TABLE III
PREDICTED AND MEASURED REBA SCORES OF THE ERGONOMIC AND

BASELINE PLANNER FOR ROTATING A 10 kg OBJECT BY 180◦ ,
MEAN±STD FOR FOUR DIFFERENT PEOPLE AND TWO ROTATION TASKS

EACH (CLOCKWISE AND COUNTERCLOCKWISE ROTATION).

Average
REBA

Maximum
REBA

% of time with
REBA ≥ 8

Planned ergonomic planner 4.6±0.2 6.5±1.1 0.9±1.5
baseline planner 6.0±0.7 7.8±0.4 25.2±24.2

Measured ergonomic planner 5.1±1.2 7.9±0.9 5.9±6.3
baseline planner 5.5±1.6 8.0±1.3 17.7±18.0

ergonomic for the human. This can be observed in states C
and D in Fig. 6. The baseline planner requires the human to
stay in a very unergonomic pose until the robot has regrasped
twice, while the ergonomic planner allows the human to
regrasp to a more ergonomic pose as quickly as possible
and to stay in the more ergonomic pose as long as possible.

Figures 7 and 8 show the predicted, respectively the
measured, REBA scores from the ergonomic and baseline
planners. The dashed lines indicate the seven states corre-
sponding to the snapshots in Fig. 6. Due to safety reasons, the
robot takes 6.0 s for regrasping or rotating the object. Height
adjustments can be performed much faster and when it is the
human’s turn to regrasp, a 3.0 s transition time is much more
comfortable for the human. With a longer transition time, the
humans would need to take active care not to be too fast.
This results in some state changes in the ergonomic planner
occurring at a different time than in the baseline planner.

Fig. 7 shows lower REBA scores for the ergonomic
planner whenever a more ergonomic alternative can be found.
The results in Fig. 8 also generally show a REBA score
below the score associated with the baseline planner. Up to
about 35 s, the predicted REBA scores are reflected in the
measurements, except for the ergonomic plan not actually
getting the REBA score as low as 3. Around 30 s and in
the last 7 s, the baseline plan was executed surprisingly
ergonomically, resulting locally in a lower REBA score for
the baseline planner.

The ergonomic plan differs from person to person, which
indicates the planner accounts for subject-specific differ-
ences. Table III lists the combined results of the planners
for all participants of the user study, each of whom rotates
the box clockwise and counterclockwise, once in simulation
and once together with the physical robot. Averaged over all
generated plans, the predicted average REBA score is clearly
lower for the ergonomic planner compared to the baseline
planner, and the standard deviation is smaller. In a single
case, the predicted maximum REBA score was as high for
the ergonomic planner as for the baseline planner. This is
the case when no more ergonomic alternative is known by
the pose estimator. Except for one single case (state B in
Fig. 6 and Fig. 7), the ergonomic planner could avoid plans
including poses in the “High Risk” category, i.e., REBA ≥ 8.

The REBA scores observed during the experiments show
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Fig. 6. Ergonomic planner (top) versus baseline planner (bottom) showing seven states of the planned sequence for rotating the box +180◦. At the bottom
of each subfigure the REBA score is printed. The states correspond to the dashed lines in Fig. 7.
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Fig. 7. Predicted ergonomic scores for the ergonomic and the baseline
planner for rotating the box +180◦. The dashed lines correspond to the
states depicted in Fig. 6 is reached. In case of states C and D the two
planners differ in when the state is reached (see lines in corresponding
colors).
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Fig. 8. Measured ergonomic scores for the ergonomic and the baseline
planner for rotating the box +180◦. As in Fig. 7, the dashed lines correspond
to the states depicted in Fig. 6.

smaller differences between the two planners. Though large
differences were observed between participants, in general
the ergonomic planner still yields a lower ergonomic cost,
and the amount of time spent in poses with a ‘high’
ergonomic risk is reduced considerably. In all cases the
standard deviation is lower for the ergonomic planner.

VIII. CONCLUSION AND DISCUSSION

This paper presents a novel concept for computing optimal
ergonomics-enhanced plans in cooperative physical human-
robot interaction tasks. The first contribution is a novel

human model which allows for prediction of an ergonomic
assessment corresponding to a state within a task. It consists
of a learned pose model and a computational load model.
The pose model is trained with human motion capture data
in order to predict the human pose as realistically as possible.
The load model assumes some prior knowledge of the task,
such as the mass and geometry of the manipulated object.
Given a state within the task, the pose and load models pro-
vide the human pose and corresponding interaction forces for
calculating a corresponding ergonomics score. Our prediction
model gives a subject-specific estimate of the ergonomics of
the states within a task.

The second contribution is the integration of this pre-
diction model with a planning algorithm. The presented
planner incorporates states and actions for both robot and
human. This allows the computation of sequential plans op-
timized for human ergonomics. It is also possible to compute
plans with a guaranteed upper bound on the permissible
ergonomics score. We have shown in simulation and robot
experiments of a collaborative human-robot box-rotating task
that the proposed concepts lead to improved human er-
gonomics. Evaluation of the proposed ergonomics-enhanced
planner in more complex collaborative tasks remains for
future work.

In this paper, we selected the REBA score for ergonomic
assessment. However, the system is flexible enough to allow
for incorporating other ergonomics indicators. For future use
of the proposed method, exploration into the effects of in-
corporating alternate ergonomics indicators is recommended,
as the discrete nature of REBA sometimes causes a large
difference in ergonomic cost for very small posture changes.

This paper demonstrates our approach to be capable of
finding a plan which affords improved ergonomics for people
working with a robot. Future work will focus on concepts
to encourage the human to follow the ergonomic plan, and
reacting appropriately when the human does not.
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[18] L. Peternel, W. Kim, J. Babič, and A. Ajoudani, “Towards ergonomic
control of human-robot co-manipulation and handover,” in IEEE-RAS
17th Int. Conf. Humanoid Robotics (Humanoids), 2017.

[19] A. G. Marin, M. S. Shourijeh, P. E. Galibarov, M. Damsgaard,
L. Fritzsche, and F. Stulp, “Optimizing contextual ergonomics models
in human-robot interaction,” in IEEE/RSJ Int. Conf. Intelligent Robots
and Systems (IROS), 2018.

[20] A. Shafti, A. Ataka, B. U. Lazpita, A. Shiva, H. A. Wurdemann,
and K. Althoefer, “Real-time robot-assisted ergonomics,” in IEEE Int.
Conf. Robotics and Automation (ICRA), 2019.

[21] L. McAtamney and E. N. Corlett, “RULA: A survey method for
the investigation of work-related upper limb disorders,” Applied Er-
gonomics, vol. 24, no. 2, pp. 91–99, 1993.

[22] B. Busch, M. Toussaint, and M. Lopes, “Planning ergonomic se-
quences of actions in human-robot interaction,” in IEEE Int. Conf.
Robotics and Automation (ICRA), 2018.

[23] AnyBody Technology A/S. [Online]. Available:
www.anybodytech.com

[24] G. David, “Ergonomic methods for assessing exposure to risk factors
for work-related musculoskeletal disorders,” Occupational Medicine,
vol. 55, no. 3, pp. 190–199, 2005.

[25] S. Hignett and L. McAtamney, “Rapid entire body assessment
(REBA),” Applied Ergonomics, vol. 31, no. 201, p. 205, 2000.

[26] S. Vijayakumar and S. Schaal, “Locally weighted projection regres-
sion: An O(n) algorithm for incremental real time learning in high
dimensional space,” in 17th Int. Conf. Machine Learning (ICML),
2000.

[27] M. Gienger, H. Janssen, and C. Goerick, “Task-oriented whole body
motion for humanoid robots,” in 5th IEEE-RAS Int. Conf. Humanoid
Robots, 2005.

[28] D. Roetenberg, H. Luinge, and P. Slycke, “Xsens MVN: full 6dof hu-
man motion tracking using miniature inertial sensors,” Xsens Motion
Technologies BV, Tech. Rep., 2009.




